分析 由題意可得x+y=($\frac{4}{x}+\frac{9}{y}$)(x+y)=13+$\frac{4y}{x}$+$\frac{9x}{y}$,由基本不等式可得.
解答 解:∵$\frac{4}{x}+\frac{9}{y}$=1,且x>0,y>0,
∴x+y=($\frac{4}{x}+\frac{9}{y}$)(x+y)
=13+$\frac{4y}{x}$+$\frac{9x}{y}$≥13+2$\sqrt{\frac{4y}{x}•\frac{9x}{y}}$=25
當(dāng)且僅當(dāng)$\frac{4y}{x}$=$\frac{9x}{y}$即x=10且y=15時(shí)取等號(hào).
故選答案為:25.
點(diǎn)評(píng) 本題考查基本不等式求最值,“1”的整體代換是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川成都石室中學(xué)高二文下期中數(shù)學(xué)試卷(解析版) 題型:解答題
在四棱錐中, 底面為菱形,側(cè)面為等邊三角形,且側(cè)面底面,分別為的中點(diǎn).
(1)求證:;
(2)求證: 平面平面;
(3)側(cè)棱上是否存在點(diǎn),使得平面?若存在,求出的值; 若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=$\frac{1}{2}$|sinx| | B. | $y=\frac{1}{2}cos(2x+\frac{π}{2})$ | C. | y=tanx | D. | y=cos$\frac{1}{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 9 | C. | 16 | D. | 27 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com