如圖,四棱錐的底面是邊長(zhǎng)為2的菱形,.已知 .

(Ⅰ)證明:
(Ⅱ)若的中點(diǎn),求三菱錐的體積.

(Ⅰ)見(jiàn)解析(Ⅱ)

解析
(1)證明:連接交于點(diǎn)
  
是菱形   
  ⊥面 
(2) 由(1)⊥面 
=

(1)證明線線垂直,需要線面垂直證起;(2)的面積是 的面積的2倍,點(diǎn)到面的高,求出面積和高,即能求出最終的體積.
【考點(diǎn)定位】考查空間直線與直線,直線與平面的位置,.三棱錐體積等基礎(chǔ)知識(shí)和基本技能,考查空間觀念,推理論證能力和運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得點(diǎn)在平面ADC上的正投影O恰好落在線段上,如圖2所示,點(diǎn)分別為線段PC,CD的中點(diǎn).

(I) 求證:平面OEF//平面APD;
(II)求直線CD與平面POF;
(III)在棱PC上是否存在一點(diǎn),使得到點(diǎn)P,O,C,F四點(diǎn)的距離相等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖, 平面平面, 是以為斜邊的等腰直角三角形, 分別為, , 的中點(diǎn), ,

(1) 設(shè)的中點(diǎn), 證明:平面;
(2) 證明:在內(nèi)存在一點(diǎn), 使平面, 并求點(diǎn), 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在邊長(zhǎng)為1的等邊三角形中,分別是邊上的點(diǎn),,的中點(diǎn),交于點(diǎn),將沿折起,得到如圖所示的三棱錐,其中

(1) 證明://平面
(2) 證明:平面
(3) 當(dāng)時(shí),求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在四棱錐中,側(cè)面底面,,底面是直角梯形,,,.

(Ⅰ)求證:平面;
(Ⅱ)設(shè)為側(cè)棱上一點(diǎn),,試確定的值,使得二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知為平行四邊形所在平面外一點(diǎn),的中點(diǎn),
求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,底面為正方形,,
平面,為棱的中點(diǎn).

(1)求證:平面平面
(2)求二面角的余弦值.
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

三棱錐,底面為邊長(zhǎng)為的正三角形,平面平面,,上一點(diǎn),,為底面三角形中心.

(Ⅰ)求證∥面;
(Ⅱ)求證:;
(Ⅲ)設(shè)中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

AB為圓O的直徑,點(diǎn)E、F在圓上,AB//EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求證:BF⊥平面DAF;
(II)求多面體ABCDFE的體積。

查看答案和解析>>

同步練習(xí)冊(cè)答案