(2012•紹興模擬)已知函數(shù)f(x)=e2x-2a
x
 
2
+2e2x
,其中e為自然對(duì)數(shù)的底數(shù).
(I)若函數(shù)f(x)在[1,2]上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)設(shè)曲線y=f(x)在點(diǎn)P(1,f(1))處的切線為l.試問(wèn):是否存在正實(shí)數(shù)a,使得函數(shù)y=f(x)的圖象被點(diǎn)P分割成的兩部分(除點(diǎn)P外)完全位于切線l的兩側(cè)?若存在,請(qǐng)求出a滿足的條件,若不存在,請(qǐng)說(shuō)明理由.
分析:(Ⅰ)f(x)在[1,2]上為單調(diào)增函數(shù)?f′(x)=2e2x-4ax+2e2≥0對(duì)任意的x∈[1,2]恒成立?不等式2a≤
e2x+e2
x
,x∈[1,2]成立,令h(x)=
e2x+e2
x
,x∈[1,2],利用其導(dǎo)數(shù)可求得a的取值范圍;
(Ⅱ)依題意可求得f(x)在點(diǎn)x=1處的切線l方程為y=(4e2-4a)x-e2+2a,令g(x)=f(x)-[(4e2-4a)x-e2+2a],假設(shè)滿足條件的正數(shù)a存在,利用g′(x)=2e2x-4ax-2e2+4a,且g′(1)=0,[g′(x)]′=4e2x-4a,對(duì)a分類討論,利用g′(x)的單調(diào)性即可分析判斷a是否存在.
解答:解:(Ⅰ)∵f(x)在[1,2]上為單調(diào)增函數(shù),
∴f′(x)=2e2x-4ax+2e2≥0對(duì)任意的x∈[1,2]恒成立.
即不等式2a≤
e2x+e2
x
,x∈[1,2]恒成立…2′
令h(x)=
e2x+e2
x
,x∈[1,2]則h′(x)=
2xe2x-e2x-e2
x2
…3′
令p(x)=2xe2x-e2x-e2,∵p′(x)=2e2x+4xe2x-2e2x=4xe2x>0,∴p(x)在[1,2]上單調(diào)遞增,
又p(1)=0,故當(dāng)x∈(1,2]時(shí),p(x)>0,h′(x)>0.
∴h(x)在[1,2]上為單調(diào)遞增,故h(x)min=h(1)=2e2
∴a的取值范圍為(-∞,e2)…6′
(Ⅱ)由(Ⅰ)知,f′(1)=4e2-4a,又f(1)=3e2-2a,
∴f(x)在點(diǎn)x=1處的切線l方程為y=f′(1)(x-1)+f(1),
即y=(4e2-4a)x-e2+2a…7′
令g(x)=f(x)-[(4e2-4a)x-e2+2a]=e2x-2ax2+2e2x-(4e2-4a)x+e2-2a=e2x-2ax2-(2e2-4a)x+e2-2a…8′
假設(shè)滿足條件的正數(shù)a存在,由于x→+∞時(shí),g(x)→+∞,則必有當(dāng)x<1時(shí),g(x)<0,當(dāng)x>1時(shí),g(x)>0,…9′
由于g′(x)=2e2x-4ax-2e2+4a,且g′(1)=0,則[g′(x)]′=4e2x-4a,
∵a>0,
∴[g′(x)]′>0的解為x>
lna
2

∴g′(x)在(-∞,
lna
2
)上單調(diào)遞減,在(
lna
2
,+∞)上單調(diào)遞増.
①當(dāng)a=e2時(shí),g′(x)在(-∞,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞増且g′(1)=0,故對(duì)任意的x∈R,g′(x)≥0,
則g(x)在(-∞,+∞)上單調(diào)遞増,又g(1)=0,則當(dāng)x<1時(shí),g(x)<0,當(dāng)x>1時(shí),g(x)>0,符合題意…11′
②當(dāng)a>e2時(shí),g′(x)在(-∞,
lna
2
)上單調(diào)遞減,g′(1)=0且
lna
2
>1,故當(dāng)x∈(1,
lna
2
),g′(x)<0,且g(x)在
(1,
lna
2
)上單調(diào)減函數(shù),又g(1)=0,從而對(duì)任意的x∈(1,
lna
2
),g(x)<0,不合題意…13′
③當(dāng)0<a<e2時(shí),g(x)在(
lna
2
,+∞)上單調(diào)遞増,g′(1)=0且
lna
2
<1,故當(dāng)x∈(
lna
2
,1),g′(x)<0,即g(x)在
lna
2
,1)上為單調(diào)減函數(shù),又g(1)=0,從而對(duì)任意的x∈(
lna
2
,1),g(x)>0,不合題意…14′
綜上所述,滿足的條件的a存在,且a=e2…15′4
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,著重考查構(gòu)造函數(shù)的思想,函數(shù)與方程,分類討論與化歸思想的綜合運(yùn)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興模擬)已知F1,F(xiàn)2是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P在橢圓上,且F1PF2=
π
2
,記線段PF1與Y軸的交點(diǎn)為Q,O為坐標(biāo)原點(diǎn),若△F1OQ與四邊形OF2PQ的面積之比為1:2,則該橢圓的離心率等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興模擬)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知b=
3
a

(1)當(dāng)c=1,且△ABC的面積為
3
4
時(shí),求a
的值;
(2)當(dāng)cosC=
3
3
時(shí),求cos(B-A)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興模擬)已知向量
a
,
b
,
c
滿足|
a
|=|
b
|=
a
b
=2,(
a
-
c
)•(
b
-2
c
)=0,則|
b
-
c
|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興模擬)已知(a-i
)
2
 
=-2i
,其中i是虛數(shù)單位,則實(shí)數(shù)a=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案