某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米.已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元.
(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;(總開發(fā)費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米的平均開發(fā)費用最低,該寫字樓應建為多少層?
(1);(2)30.
【解析】
試題分析:(1)經(jīng)審題,先算出第一層樓的建筑費用,由條件“從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元.”可知,各樓層的建筑費用成等差數(shù)列,首項為第一層的建筑費用,公差為(萬元),再根據(jù)等差數(shù)列前項和公式可得出總開發(fā)費用的函數(shù)的表達式;(2)由(1)知每平方米的平均開發(fā)費用為元,構造函數(shù),并由基本不等式求出函數(shù)的最小值,注意自變量是正整數(shù).
試題解析:(1)由已知,寫字樓最下面一層的總建筑費用為:
(元)(萬元),
從第二層開始,每層的建筑總費用比其下面一層多:
(元)(萬元),
寫字樓從下到上各層的總建筑費用構成以800為首項,20為公差的等差數(shù)列,
所以函數(shù)表達式為:
. 6分
(2)由(1)知寫字樓每平方米平均開發(fā)費用為:
(元). 10分
當且僅當時,即時等號成立.
答:該寫字樓建為30層時,每平方米平均開發(fā)費用最低. 12分
考點:1.函數(shù)建模;2.基本不等式.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請注意換算單位
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;
(總開發(fā)費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應建為多少層?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省鹽城市東臺中學高三(上)數(shù)學階段練習(二)(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com