已知向量=(sinx,cosx),=(1,一2),且,則tan2x=   
【答案】分析:根據(jù)兩向量垂直,得出向量坐標(biāo)之間的關(guān)系,這樣得到三角函數(shù)式,把三角函數(shù)式變形,算出角的正切值,再由二倍角公式得出要求的結(jié)論.解題過程只要認(rèn)真,本題能得分.
解答:解:∵,
∴sinx-2cosx=0,
∴tanx=2,
∴tan2x==-
點(diǎn)評(píng):本題以向量為載體,實(shí)際上考查的是三角函數(shù)的知識(shí),高考題中常出現(xiàn)向量和其他內(nèi)容相結(jié)合的題目,本題只要熟記向量垂直的充要條件和正切的二倍角公式,就可以解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),向量
b
=(1,
3
)
,則|
a
+
b
|的最大值為( 。
A、3
B、
3
C、1
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(sinx+2cosx,3cosx),f(x)=
a
b
,x∈R.求
(Ⅰ)函數(shù)f(x)的最大值及取得最大值的自變量x的集合;
(Ⅱ)函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•衢州一模)已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1).
(I)當(dāng)向量
a
與向量
b
共線時(shí),求tanx的值;
(II)求函數(shù)f(x)=2(
a
+
b
)•
b
圖象的一個(gè)對(duì)稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•深圳二模)已知向量
m
=(sinx,-cosx),
n
=(cosθ,-sinθ),其中0<θ<π.函數(shù)f(x)=
m
n
在x=π處取最小值.
(Ⅰ)求θ的值;
(Ⅱ)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若sinB=2sinA,f(C)=
1
2
,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx+sinx,
3
cosx),  
b
=(cosx-sinx,2sinx)
,記f(x)=
a
b
,  x∈R

(1)求函數(shù)f(x)的最小正周期.
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=1,且a=1,b+c=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案