一個橢圓C1的中心在原點,焦點在x軸上,焦距為2
13
,一雙曲線C2和橢圓C1有公共焦點,且雙曲線C2的實半軸長比橢圓C1的半長軸長小4,雙曲線C2的離心率e2與橢圓C1離心率e1之比為7:3,求橢圓C1和雙曲線C2的方程.
考點:雙曲線的標(biāo)準(zhǔn)方程,橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)橢圓、雙曲線的標(biāo)準(zhǔn)方程分別為
x2
a12
+
y2
b12
=1(a1>b1>0)、
x2
a22
-
y2
b22
=1
(a2>0,b2>0),由題意得
a12-b12=13
a22+b22=13
a1-a2=4
c
a2
c
a1 
=
7
3
,由此能求出橢圓C1和雙曲線C2的標(biāo)準(zhǔn)方程.
解答: 解:設(shè)橢圓、雙曲線的標(biāo)準(zhǔn)方程分別為
x2
a12
+
y2
b12
=1(a1>b1>0)、
x2
a22
-
y2
b22
=1
(a2>0,b2>0),
由題意得
a12-b12=13
a22+b22=13
a1-a2=4
c
a2
c
a1 
=
7
3
,
解得a1=7,a2=3,b1=6,b2=2,
所以橢圓C1和雙曲線C2的標(biāo)準(zhǔn)方程分別為
x2
49
+
y2
36
=1和
x2
9
-
y2
4
=1.
點評:本題考查橢圓和雙曲線方程的求法,是中檔題,解題時要注意圓錐曲線的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-x3+2x2-x(x∈R)
(1)求曲線y=f(x)在點(2,f(x))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,首項為a1,公差為d,前n項和為Sn,若數(shù)列{an}中任意不同兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列為“F數(shù)列”.
(1)若a1=4,d=2,判斷該數(shù)列是否為“F數(shù)列”.
(2)若a1,d∈N,是否存在這樣的“F數(shù)列”,使S10≤70?若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,請說明理由.
(3)試問:數(shù)列{an}為“F數(shù)列”的充要條件是什么?給出你的結(jié)論并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)m,n滿足m2+n2=2,則點P(m+n,m-n)的軌跡方程是( 。
A、x2+y2=1
B、x2-y2=1
C、x2+y2=2
D、x2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m
(1)當(dāng)a=-3,m=0時,求方程f(x)-g(x)=0的解;
(2)若方程f(x)=0在[-1,1]上有實數(shù)根,求實數(shù)a的取值范圍;
(3)當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x+2y=4,則2x+4y的最小值是(  )
A、4
B、8
C、2
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線x=-
π
3
,x=
π
3
,y=0與曲線y=cosx所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(1,2)的直線,將圓形區(qū)域{(x,y)|x2+y2≤9}分為兩部分,使這兩部分的面積之差最大,則該直線的方程為( 。
A、x+2y-5=0
B、y-2=0
C、2x-y=0
D、x-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(Ⅰ)(
25
9
)0.5+(
27
64
)-
2
3
+(0.1)-2-100•π0
;
(Ⅱ)lg
1
2
-lg
5
8
+lg12.5-log89•log27
8+e2ln2

查看答案和解析>>

同步練習(xí)冊答案