已知數(shù)列{an}滿足a1=0,a2=2,且對任意m、n∈N*都有
a2m-1+a2n-1=2am+n-1+2(m-n)2
(Ⅰ)求a3,a5;
(Ⅱ)設(shè)bn=a2n+1-a2n-1(n∈N*),證明:{bn}是等差數(shù)列;
(Ⅲ)設(shè)cn=(an+1-an)qn-1(q≠0,n∈N*),求數(shù)列{cn}的前n項和Sn.
[番茄花園1]1.
問題的能力.
解:(1)由題意,零m=2,n-1,可得a3=2a2-a1+2=6
再令m=3,n=1,可得a5=2a3-a1+8=20………………………………2分
(2)當(dāng)n∈N *時,由已知(以n+2代替m)可得
a2n+3+a2n-1=2a2n+1+8
于是[a2(n+1)+1-a2(n+1)-1]-(a2n+1-a2n-1)=8
即 bn+1-bn=8
所以{bn}是公差為8的等差數(shù)列………………………………………………5分
(3)由(1)(2)解答可知{bn}是首項為b1=a3-a1=6,公差為8的等差數(shù)列
本小題主要考查數(shù)列的基礎(chǔ)知識和化歸、分類整合等數(shù)學(xué)思想,以及推理論證、分析與解決
則bn=8n-2,即a2n+=1-a2n-1=8n-2
另由已知(令m=1)可得
an=-(n-1)2.
那么an+1-an=-2n+1
=-2n+1
=2n
于是cn=2nqn-1.
當(dāng)q=1時,Sn=2+4+6+……+2n=n(n+1)
當(dāng)q≠1時,Sn=2·q0+4·q1+6·q2+……+2n·qn-1.
兩邊同乘以q,可得
qSn=2·q1+4·q2+6·q3+……+2n·qn.
上述兩式相減得
(1-q)Sn=2(1+q+q2+……+qn-1)-2nqn
=2·-2nqn
=2·
所以Sn=2·
綜上所述,Sn=…………………………12分
[番茄花園1]21.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com