已知,點(diǎn)B是軸上的動點(diǎn),過B作AB的垂線交軸于點(diǎn)Q,若,.
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
(1) y2=x;(2)存在定直線x=
解析試題分析:(1)設(shè)B(0,t),Q(m,0),P(x,y),由射影定理并整理可得m=-4t,然后再利用已知條件和向量相等的坐標(biāo)表示的充要條件列出關(guān)于x,y的方程即可得到點(diǎn)P的軌跡方程.(2)假設(shè)存在.根據(jù)已知幾何條件和勾股定理列出相交弦的表達(dá)式,再尋找a存在的條件即可.
試題解析:(1)設(shè)B(0,t),設(shè)Q(m,0),t2=|m|,m0, m=-4t2,
Q(-4t2,0),設(shè)P(x,y),則=(x-,y),=(-4t2-,0),
2=(-,2 t), +=2。
(x-,y)+ (-4t2-,0)= (-,2 t),
x=4t2,y="2" t, y2=x,此即點(diǎn)P的軌跡方程; 6分。
(2)由(1),點(diǎn)P的軌跡方程是y2=x;設(shè)P(y2,y),M (4,0) ,則以PM為直徑的圓的圓心即PM的中點(diǎn)T(,), 以PM為直徑的圓與直線x=a的相交弦長:
L=2
=2=2 10分
若a為常數(shù),則對于任意實(shí)數(shù)y,L為定值的條件是a-="0," 即a=時,L=
存在定直線x=,以PM為直徑的圓與直線x=的相交弦長為定值。
(2)存在定直線x=,以PM為直徑的圓與直線x=的相交弦長為定值
考點(diǎn):1.射影定理;2.向量相等的坐標(biāo)表示的充要條件;3.勾股定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)平面向量,,函數(shù).
(1)當(dāng)時,求函數(shù)的取值范圍;
(2)當(dāng),且時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),曲線上的動點(diǎn)滿足,定點(diǎn),由曲線外一點(diǎn)向曲線引切線,切點(diǎn)為,且滿足.
(1)求線段長的最小值;
(2)若以為圓心所作的圓與曲線有公共點(diǎn),試求半徑取最小值時圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,函數(shù).
(Ⅰ)若方程在上有解,求的取值范圍;
(Ⅱ)在中,分別是A,B,C所對的邊,當(dāng)(Ⅰ)中的取最大值且時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知數(shù)列的通項(xiàng)公式,則數(shù)列的前項(xiàng)和取得最小值時的值為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,在AC上取點(diǎn)N,使得AN=AC,在AB上取點(diǎn)M,使得AM=AB,在BN的延長線上取點(diǎn)P,使得NP=BN,在CM的延長線上取一點(diǎn)Q,使MQ=λCM時,=,試確定λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com