已知函數(shù),當(dāng)時(shí),的極大值為7;當(dāng)時(shí),有極小值.

(Ⅰ)求的值;

(Ⅱ)函數(shù)的極小值.

 

【答案】

(Ⅰ)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052600210784829943/SYS201205260022282071182919_DA.files/image001.png">,所以

由題意得,的兩個(gè)解,

由韋達(dá)定理得:,

再由,得

(Ⅱ)函數(shù)的極小值為 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆江西省臨川二中高三第二學(xué)期第一次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題


(本小題滿(mǎn)分14分)
已知函數(shù),當(dāng)時(shí),取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿(mǎn)足下列兩個(gè)條件:
①直線與曲線相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意都有.則稱(chēng)直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的,當(dāng),且時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三第二學(xué)期第一次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

 

(本小題滿(mǎn)分14分)

已知函數(shù),當(dāng)時(shí),取得極小值.

(1)求,的值;

(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿(mǎn)足下列兩個(gè)條件:

①直線與曲線相切且至少有兩個(gè)切點(diǎn);

②對(duì)任意都有.則稱(chēng)直線為曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分14分)

已知函數(shù),當(dāng)時(shí),取得極小值.

(1)求的值;

(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿(mǎn)足下列兩個(gè)條件:

①直線與曲線相切且至少有兩個(gè)切點(diǎn);

②對(duì)任意都有.則稱(chēng)直線為曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),當(dāng)時(shí),取得極小值.

(Ⅰ)求的值;

(Ⅱ)求函數(shù)上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案