已知數(shù)列…的前n項和為Sn,計算得S1S2,S3,…,由此可猜測Sn等于________.

答案:
解析:

  答案:

  解析:由…的分子、分母特征猜測Sn


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an的前n項和Sn滿足條件2Sn=3(an-1),其中n∈N*
(1)求證:數(shù)列an成等比數(shù)列;
(2)設數(shù)列bn滿足bn=log3an.若 tn=
1bnbn+1
,求數(shù)列tn的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an的前n項和Sn=
32
(an-1)
,n∈N+
(1)求an的通項公式;
(2)設n∈N+,集合An={y|y=ai,i≤n,i∈N+},B={y|y=4m+1,m∈N+}.現(xiàn)在集合An中隨機取一個元素y,記y∈B的概率為p(n),求p(n)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an的前n項和為Sn,對任意n∈N*,點(n,Sn)都在函數(shù)f(x)=2x2-x的圖象上.
(1)求數(shù)列an的通項公式;
(2)設bn=
Sn
n+p
,且數(shù)列bn是等差數(shù)列,求非零常數(shù)p的值;
(3)設cn=
2
anan+1
,Tn是數(shù)列cn的前n項和,求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an的前n項和為Sn,a1=1,nan=Sn+2n(n-1)(n∈N*).
(I)求數(shù)列an的通項公式;
(II)設Tn=
a1+1
22
+
a2+1
23
+…+
an+1
2n+1
,求Tn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an的前n項和為Sn,a1=1,Sn=an+1-3n-1,n∈N*
(Ⅰ)證明:數(shù)列an+3是等比數(shù)列;
(Ⅱ)對k∈N*,設f(n)=
Sn-an+3n  n=2k-1 
log2(an+3)  n=2k.
求使不等式cos(mπ)[f(2m2)-f(m)]≤0成立的正整數(shù)m的取值范圍..

查看答案和解析>>

同步練習冊答案