5.已知函數(shù)f(x)=sin(π-x)+$\sqrt{3}$cosx.
(Ⅰ)求函數(shù)y=f(x)的最小周期;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,$\frac{5π}{6}$]上的取值范圍.

分析 (Ⅰ)由條件利用兩角和的正弦公式化簡(jiǎn)函數(shù)f(x)的解析式,再利用正弦函數(shù)的周期性求得函數(shù)y=f(x)的最小周期.
(Ⅱ)由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域求得函數(shù)y=g(x)在區(qū)間[0,$\frac{5π}{6}$]上的取值范圍.

解答 解:(Ⅰ)由函數(shù)f(x)=sin(π-x)+$\sqrt{3}$cosx=sinx+$\sqrt{3}$cosx=2sin(x+$\frac{π}{3}$),
可得它的最小正周期為2π.
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)=2sin(x-$\frac{π}{6}$+$\frac{π}{3}$)=2sin(x+$\frac{π}{6}$)的圖象,
當(dāng)x∈[0,$\frac{5π}{6}$]時(shí),x+$\frac{π}{6}$∈[$\frac{π}{6}$,π],sin(x+$\frac{π}{6}$)∈[0,1],∴2sin(x+$\frac{π}{6}$)∈[0,2],
即f(x)的值域?yàn)閇0,2].

點(diǎn)評(píng) 本題主要考查兩角和的正弦公式,正弦函數(shù)的周期性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)化簡(jiǎn)$\frac{1}{{sin{{10}°}}}-\frac{{\sqrt{3}}}{{sin{{80}°}}}$;
(2)已知$-\frac{π}{2}<x<0$,$sinx+cosx=\frac{1}{5}$,求$\frac{{sin2x+2{{sin}^2}x}}{1-tanx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x-y≤2\;,\;\;\\ 2x+y≥1\;,\;\;\\ y≤1\;,\;\;\end{array}\right.$則z=x+y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若已知S6<S7,S7>S8,則下列敘述中正確的個(gè)數(shù)有(  )
①S7是所有Sn(n∈N*)中的最大值;
②a7是所有an(n∈N*)中的最大值;
③公差d一定小于0;
④S9一定小于S6
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在區(qū)間[0,2π]上隨機(jī)地取一個(gè)數(shù)x,則事件“2sinx<1”發(fā)生的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若集合 A={x|-3<x<3},B={x|(x+4)(x-2)>0},則 A∩B=( 。
A.{x|-3<x<2}B.{x|2<x<3}C.{x|-3<x<-2}D.{x|x<-4或x>-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知復(fù)數(shù)z=i(2+i),則|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$,…,$\frac{1}{(2n-1)(2n+1)}$,…的前n項(xiàng)和為Sn,計(jì)算得S1=$\frac{1}{3}$,S2=$\frac{2}{5}$,S3=$\frac{3}{7}$,照此規(guī)律,Sn=$\frac{n+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)A是拋物線y=$\frac{1}{4}{x^2}$的對(duì)稱(chēng)軸與準(zhǔn)線的交點(diǎn),點(diǎn)B為該拋物線的焦點(diǎn),點(diǎn)P在該拋物線上且滿(mǎn)足|PB|=m|PA|,當(dāng)m取最小值時(shí),點(diǎn)P恰好在以A,B為焦點(diǎn)的雙曲線上,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{2}+1$D.$\sqrt{5}-1$

查看答案和解析>>

同步練習(xí)冊(cè)答案