精英家教網 > 高中數學 > 題目詳情

甲、乙兩名射手在一次射擊中的得分為兩個相互獨立的隨機變量ξ和η,且ξ、η分布列為

ξ
1
2
3
P
a
0.1
0.6
 
η
1
2
3
P
0.3
b
0.3
(1)求a、b的值;
(2)計算ξ、η的期望和方差,并以此分析甲、乙的技術狀況.

(1)a=0.3,b=0.4.(2)甲、乙兩人技術都不夠全面

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

每年的三月十二日,是中國的植樹節(jié),林管部門在植樹前,為保證樹苗的質量,都會在植樹前對樹苗進行檢測.現從甲、乙兩種樹苗中各抽測了10株樹苗的高度,規(guī)定高于128厘米的樹苗為“良種樹苗”,測得高度如下(單位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根據抽測結果,畫出甲、乙兩種樹苗高度的莖葉圖,并根據你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出對兩種樹苗高度的統(tǒng)計結論;
(2)設抽測的10株甲種樹苗高度平均值為x,將這10株樹苗的高度依次輸入按程序框圖進行運算(如圖),問輸出的S大小為多少?并說明S的統(tǒng)計學意義;
(3)若小王在甲種樹苗中隨機領取了5株進行種植,用樣本的頻率分布估計總體分布,求小王領取到的“良種樹苗”的株數X的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

從某學校的名男生中隨機抽取名測量身高,被測學生身高全部介于cm和cm之間,將測量結果按如下方式分成八組:第一組[,),第二組[,),…,第八組[,],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數相同,第六組的人數為人.
(1)求第七組的頻率并估計該校800名男生中身高在cm以上(含cm)的人數;
(2)從第六組和第八組的男生中隨機抽取兩名男生,記他們的身高分別為,事件{},求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某大型公益活動從一所名牌大學的四個學院中選出了名學生作為志愿者,參加相關的活
動事宜.學生來源人數如下表:

學院
外語學院
生命科學學院
化工學院
藝術學院
人數




 
(1)若從這名學生中隨機選出兩名,求兩名學生來自同一學院的概率;
(2)現要從這名學生中隨機選出兩名學生向觀眾宣講此次公益活動的主題.設其中來自外語學院的人數為,令,求隨機變量的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

A高校自主招生設置了先后三道程序:部分高校聯合考試、本校專業(yè)考試、本校面試.在每道程序中,設置三個成績等級:優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學學生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為,每道程序中得優(yōu)、良、中的概率分別為p1、p2.
(1)求學生甲不能通過A高校自主招生考試的概率;
(2)設ξ為學生甲在三道程序中獲優(yōu)的次數,求ξ的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為防止山體滑坡,某地決定建設既美化又防護的綠化帶,種植松樹、柳樹等植物.某人一次種植了n株柳樹,各株柳樹成活與否是相互獨立的,成活率為p,設ξ為成活柳樹的株數,數學期望E(ξ)=3,標準差σ(ξ)為.
(1)求n、p的值并寫出ξ的分布列;
(2)若有3株或3株以上的柳樹未成活,則需要補種,求需要補種柳樹的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知盒中有10個燈泡,其中8個正品,2個次品.需要從中取出2只正品,每次取一個,取出后不放回,直到取出2個正品為止.設X為取出的次數,求X的概率分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了解某市的交通狀況,現對其6條道路進行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如下表:

評估的平均得分



全市的總體交通狀況等級
不合格
合格
優(yōu)秀
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級;
(2)用簡單隨機抽樣方法從這條道路中抽取條,它們的得分組成一個樣本,求該樣本的平均數與總體的平均數之差的絕對值不超過的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知離散型隨機變量ξ1的概率分布為

ξ1
1
2
3
4
5
6
7
P







離散型隨機變量ξ2的概率分布為
ξ2
3.7
3.8
3.9
4
4.1
4.2
4.3
P







求這兩個隨機變量數學期望、方差與標準差.

查看答案和解析>>

同步練習冊答案