已知函數(shù)f(x)=kx+1,其中實(shí)數(shù)k隨機(jī)選自區(qū)間[-2,1],則對(duì)?x∈[-1,1],都有f(x)≥0恒成立的概率是
 
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:由題意知本題是一個(gè)幾何概型,概率的值對(duì)應(yīng)長(zhǎng)度之比,根據(jù)題目中所給的條件可求k的范圍,區(qū)間的長(zhǎng)度之比等于要求的概率.
解答: 解:由題意知本題是一個(gè)幾何概型,概率的值對(duì)應(yīng)長(zhǎng)度之比,
∵-2≤k≤1,其區(qū)間長(zhǎng)度是3
又∵對(duì)?x∈[0,1],f(x)≥0且f(x)是關(guān)于x的一次型函數(shù),在[0,1]上單調(diào)
f(0)≥0;
f(1)≥0
-2≤k≤1

∴-1≤k≤1,其區(qū)間長(zhǎng)度為2
∴P=
2
3

故答案為:
2
3
點(diǎn)評(píng):本題主要考查了幾何概型,以及一次函數(shù)的性質(zhì),概率題目的考查中,概率只是一個(gè)載體,其他內(nèi)容占的比重較大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有A,B兩個(gè)盒子,A盒中裝有3個(gè)紅球,2個(gè)黑球,B盒中裝有2個(gè)紅球,3個(gè)黑球,現(xiàn)從A,B兩個(gè)盒子中各取2個(gè)球互換,假定取到每個(gè)球是等可能的.
(Ⅰ)求B盒中紅球個(gè)數(shù)不變的概率;
(Ⅱ)互換2球后,B盒中紅球的個(gè)數(shù)記為ξ,寫出ξ的分布列,并求出ξ的期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)F1,F(xiàn)2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長(zhǎng)為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2,斜率為k(k≠0)的直線l與橢圓C相交于E,F(xiàn)兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′.試問(wèn):k•k′是否為定值?若為定值請(qǐng)求出;若不為定值請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x||x-2|<a,a>0},集合B={x|
2x-2
x+3
<1}
(1)若a=1,求A∩B;
(2)若A?B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
2
x
-1)+x,則當(dāng)x>1時(shí),函數(shù)f(x)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)應(yīng)任意兩個(gè)正整數(shù)m,n,定義一種新運(yùn)算m⊕n=
m+n,m與n奇偶性相同
mn,m與n奇偶性不相同
,若集合P={(a,b)|a⊕b=20,a,b∈N*},則集合P中元素個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,E是BC的一個(gè)四等分點(diǎn),F(xiàn)是DC的一個(gè)三等分點(diǎn),且
AB
=
a
,
AD
=
b
,試用
a
b
表示下列向量:
(1)
DE
=
 
;
(2)
BF
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)是R上的奇函數(shù),則f(-2013)+f(0)+f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
p
=(2,-3),
q
=(x,2),且
p
q
,則|
p
+
q
|的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案