已知函數(shù)(x≠0,常數(shù)a∈R.

(1)當(dāng)a=2時(shí),解不等式f(x)―f(x―1)>2x-1;

(2)討論函數(shù)f(x)的奇偶性,并說(shuō)明理由.

答案:
解析:

  解:(1),

  ,

  

  原不等式的解為;

  (2)當(dāng)時(shí),,

  對(duì)任意,,

  為偶函數(shù).

  當(dāng)時(shí),,

  取,得,

  ,

  函數(shù)既不是奇函數(shù),也不是偶函數(shù).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+
2
x
,數(shù)列{an}中,a1=a,an+1=f(an)(n∈N*).當(dāng)a取不同的值時(shí),得到不同的數(shù)列{an},如當(dāng)a=1時(shí),得到無(wú)窮數(shù)列1,3,
5
3
,
11
5
,…;當(dāng)a=2時(shí),得到常數(shù)列2,2,2,…;當(dāng)a=-2時(shí),得到有窮數(shù)列-2,0.
(Ⅰ)若a3=0,求a的值;
(Ⅱ)設(shè)數(shù)列{bn}滿足b1=-2,bn=f(bn+1)(n∈N*).求證:不論a取{bn}中的任何數(shù),都可以得到一個(gè)有窮數(shù)列{an};
(Ⅲ)若當(dāng)n≥2時(shí),都有
5
3
an<3
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-
a
x
(a∈R),下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-1|+|x+3|.
(1)求x的取值范圍,使f(x)為常函數(shù);
(2)若關(guān)于x的不等式f(x)-a≤0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•成都模擬)已知函數(shù)f(x)的定義域?yàn)镽,且f(x)不為常函數(shù),有以下命題:
①函數(shù)g(x)=f(x)+f(-x)一定是偶函數(shù);
②若對(duì)任意x∈R都有f(x)+f(2-x)=0,則f(x)是以2為周期的周期函數(shù);
③若f(x)是奇函數(shù),且對(duì)任意x∈R都有f(x)+f(2+x)=0,則f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng);
④對(duì)任意x1,x2∈R且x1≠x2,若
f(x1)-f(x2)x1-x2
>0
恒成立,則f(x)為(-∞,+∞)上的增函數(shù).
其中正確命題的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1.
(Ⅰ)當(dāng)k=-2時(shí),求函數(shù)h(x)=f(x)+g(x)的定義域;
(Ⅱ)若函數(shù)H(x)=f(x)-g(x)是奇函數(shù)(不為常函數(shù)),求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案