【題目】已知向量,向量是與向量夾角為的單位向量.

1)求向量;

2)若向量與向量共線,且的夾角為鈍角,求實(shí)數(shù)x的取值范圍.

【答案】(1)0,1)或;(2) (﹣,﹣2)∪(﹣2)∪(0,2).

【解析】

1)設(shè)向量,由題意可得,解方程組即可。

(2)由(1)和向量與向量共線,可知,因?yàn)?/span>的夾角為鈍角,所以,且兩個(gè)向量不共線,即可解出的范圍。

1)向量,向量是與向量夾角為的單位向量,

)=(cossin),

所以cos),sin))=(cos,sin)=(0,1);

cos),sin))=(cossin)=(,);

所以向量0,1)或;

2)由向量與向量共線,得);

的夾角為鈍角,

,

,

解得,

所以實(shí)數(shù)x的取值范圍是(﹣,﹣2)∪(﹣2)∪(0,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxx2xlnx,gx)=(mxlnx+1mxm0).

1)討論函數(shù)fx)的單調(diào)性;

2)求函數(shù)Fx)=fx)﹣gx)在區(qū)間[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長(zhǎng)為1的正方體中,點(diǎn)是對(duì)角線上的動(dòng)點(diǎn)(點(diǎn)不重合),則下列結(jié)論正確的是__________

①存在點(diǎn),使得平面平面

②存在點(diǎn),使得平面平面;

的面積可能等于

④若分別是在平面與平面的正投影的面積,則存在點(diǎn),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線C是平面內(nèi)與兩個(gè)定點(diǎn)的距離之積等于常數(shù)的點(diǎn)的軌跡,給出下列三個(gè)結(jié)論:

①曲線過坐標(biāo)原點(diǎn);②曲線關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;

③曲線關(guān)于橫軸對(duì)稱;④曲線關(guān)于縱軸對(duì)稱;

⑤曲線關(guān)于對(duì)稱;⑥若點(diǎn)P在曲線上,則的面積不大于.

其中,所有正確結(jié)論的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左右焦點(diǎn)分別為,,過焦點(diǎn)的一條直線交橢圓于P,Q兩點(diǎn),若的周長(zhǎng)為,且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比為

1)求出橢圓的方程;

2)若,求出弦長(zhǎng)的值;

3)若,求出直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)是由 個(gè)實(shí)數(shù)組成的列的數(shù)表,其中 表示位于第行第列的實(shí)數(shù),且.

定義 為第s行與第t行的積. 若對(duì)于任意),都有,則稱數(shù)表為完美數(shù)表.

(Ⅰ)當(dāng)時(shí),試寫出一個(gè)符合條件的完美數(shù)表;

(Ⅱ)證明:不存在10行10列的完美數(shù)表;

(Ⅲ)設(shè)列的完美數(shù)表,且對(duì)于任意的,都有,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線上的動(dòng)點(diǎn)到點(diǎn)的距離減去到直線的距離等于1.

(1)求曲線的方程;

(2)若直線 與曲線交于,兩點(diǎn),求證:直線與直線的傾斜角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個(gè)單位長(zhǎng)度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),左焦點(diǎn)、右焦點(diǎn)都在軸上,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為,在軸上方使成立的點(diǎn)只有一個(gè).

(1)求橢圓的方程;

(2)過點(diǎn)的兩直線,分別與橢圓交于點(diǎn),和點(diǎn),,且,比較的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案