已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(3)對(duì)上述等腰三角形AnBnAn+1添加適當(dāng)條件,提出一個(gè)問(wèn)題,并做出解答.(根據(jù)所提問(wèn)題及解答的完整程度,分檔次給分)
【答案】分析:(1)根據(jù)Bn(n,yn)在直線上可得,然后根據(jù)等差數(shù)列的定義可知數(shù)列{yn}是等差數(shù)列;
(2)由題意得,則xn+xn+1=2n,根據(jù)遞推關(guān)系又有xn+2+xn+1=2(n+1)兩式作差可得xn+2-xn是常數(shù),從而x1,x3,x5,…;x2,x4,x6,…都是等差數(shù)列,即可求出數(shù)列{xn}的通項(xiàng)公式;
(3)提出問(wèn)題:若等腰三角形AnBnAn+1中,是否有直角三角形,若有,求出實(shí)數(shù)a.討論n的奇偶,求出|AnAn+1|,過(guò)Bn作x軸的垂線,垂足為Cn,則,要使等腰三角形AnBnAn+1為直角三角形,必須且只須:|AnAn+1|=2|BnCn|,從而求出a的值.
解答:解:(1)依題意有,于是
所以數(shù)列{yn}是等差數(shù)列.(4分)
(2)由題意得,即xn+xn+1=2n,(n∈N*)         ①
所以又有xn+2+xn+1=2(n+1).②
由②-①得:xn+2-xn=2,所以xn+2-xn是常數(shù). (6分)
由x1,x3,x5,…;x2,x4,x6,…都是等差數(shù)列.x1=a(0<a<1),x2=2-a,那么得 
 x2k-1=x1+2(k-1)=2k+a-2,x2k=x2+2(k-1)=2-a+2(k-1)=2k-a.(k∈N*)(8分)
(10分)
(3)提出問(wèn)題:若等腰三角形AnBnAn+1中,是否有直角三角形,若有,求出實(shí)數(shù)a.
解:當(dāng)n為奇數(shù)時(shí),An(n+a-1,0),An+1(n+1-a,0),所以|AnAn+1|=2(1-a);
當(dāng)n為偶數(shù)時(shí),An(n-a,0),An+1(n+a,0),所以|AnAn+1|=2a;
過(guò)Bn作x軸的垂線,垂足為Cn,則,要使等腰三角形AnBnAn+1為直角三角形,必須且只須:|AnAn+1|=2|BnCn|.(13分)
當(dāng)n為奇數(shù)時(shí),有,即
,當(dāng)n≥5,a<0不合題意.(15分)
當(dāng)n為偶數(shù)時(shí),有,,同理可求得 
 
當(dāng)n≥4時(shí),a<0不合題意.(17分)
綜上所述,使等腰三角形AnBnAn+1中,有直角三角形,a的值為.(18分)
點(diǎn)評(píng):本題主要考查了數(shù)列與幾何的綜合,同時(shí)考查了數(shù)列的通項(xiàng)公式,第三問(wèn)是開(kāi)放題,有一定的新意,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(Ⅰ)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)問(wèn)是否存在等腰直角三角形AnBnAn+1?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y=
1
4
x+
1
12
圖象上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成以
Bn為頂點(diǎn)的等腰三角形.
(1)求{yn}的通項(xiàng)公式,且證明{yn}是等差數(shù)列;
(2)試判斷xn+2-xn是否為同一常數(shù)(不必證明),并求出數(shù)列{xn}的通項(xiàng)公式;
(3)在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(3)對(duì)上述等腰三角形AnBnAn+1添加適當(dāng)條件,提出一個(gè)問(wèn)題,并做出解答.(根據(jù)所提問(wèn)題及解答的完整程度,分檔次給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y=
1
4
x+
1
12
圖象上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成一個(gè)頂角的頂點(diǎn)為Bn的等腰三角形.
(1)求數(shù)列{yn}2的通項(xiàng)公式,并證明{yn}3是等差數(shù)列;
(2)證明xn+2-xn5為常數(shù),并求出數(shù)列{xn}6的通項(xiàng)公式;
(3)問(wèn)上述等腰三角形An8Bn9An+110中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•藍(lán)山縣模擬)已知點(diǎn)列B1(1,b1),B2(2,b2),…,Bn(n,bn),…(n∈N?)順次為拋物線y=
1
4
x2上的點(diǎn),過(guò)點(diǎn)Bn(n,bn)作拋物線y=
1
4
x2的切線交x軸于點(diǎn)An(an,0),點(diǎn)Cn(cn,0)在x軸上,且點(diǎn)An,Bn,Cn構(gòu)成以點(diǎn)Bn為頂點(diǎn)的等腰三角形.
(1)求數(shù)列{an},{cn}的通項(xiàng)公式;
(2)是否存在n使等腰三角形AnBnCn為直角三角形,若有,請(qǐng)求出n;若沒(méi)有,請(qǐng)說(shuō)明理由.
(3)設(shè)數(shù)列{
1
an•(
3
2
+cn)
}的前n項(xiàng)和為Sn,求證:
2
3
≤Sn
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案