19.不等式|2x-1|≤5的解集為( 。
A.(-∞,-2]B.(2,3]C.[3,+∞)D.[-2,3]

分析 把要求的不等式化為-5≤2x-1≤5,從而求得x的范圍.

解答 解:不等式|2x-1|≤5,即-5≤2x-1≤5,求得-2≤x≤3,
故選:D.

點評 本題主要考查絕對值不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}的前n項和為${S}_{n}={n}^{2}$,則a5=(  )
A.5B.9C.16D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x2+bx+c(b,c∈R),若方程f(x)=x無實數(shù)根,則方程f[f(x)]=x的實數(shù)根的個數(shù)為( 。
A.4B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在空間直角坐標系O-xyz中,已知A(2,0,0),B(0,2,0),C(0,0,0),P(0,1,$\sqrt{3}$),則三棱錐P-ABC在坐標平面xOz上的正投影圖形的面積為$\sqrt{3}$;該三棱錐的最長棱的棱長為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線a,b和平面α,有以下四個命題:
①若a∥α,a∥b,則b∥α;
②若a?α,b∩α=A,則a與b異面;
③若a∥b,b⊥α,則a⊥α;
④若a⊥b,a⊥α,則b∥α.
其中真命題的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)短軸的一個端點與橢圓C的兩個焦點構(gòu)成面積為3的直角三角形.
(1)求橢圓C的方程;
(2)過圓E:x2+y2=2上任意一點P作圓E的切線l,若l與橢圓C相交于A,B兩點.求證:以AB為直徑的圓恒過坐標原點O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在鐵路建設(shè)中需要確定隧道的長度和隧道兩端的施工方向,如圖,已測得隧道兩端點A、B到某一點C的距離分別為b,a且∠ACB=α,∠ABC=β.(提示:sin75°=$\frac{\sqrt{6}+\sqrt{2}}{4}$)
(1)若a=$\sqrt{3}$-1,b=1,β=75°,求在C點處張角α的大小;
(2)若α=120°,a+b=$\sqrt{3}$,求隧道AB的長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.計算:arccos$\frac{1}{2}$=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知O為△ABC的外心,若AC=1,$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且x+2y=1,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案