已知拋物線y=-
x22
與過點(diǎn)M(0,-1)的直線l相交于A、B兩點(diǎn),O為原點(diǎn).若OA和OB的斜率之和為1.
(1)求直線l的方程; 
(2)求△AOB的面積.
分析:(1)設(shè)直線l的方程為y=kx-1,A(x1,y1),B(x2,y2),與拋物線的方程聯(lián)立得到根與系數(shù)關(guān)系,再利用斜率計算公式及OA和OB的斜率之和為1.即可得出k.
(2)解法1:利用根與系數(shù)的關(guān)系可得|x1-x2|=
4k2+8
=2
3
,|OM|=1.再利用S△AOB=
1
2
|x1-x2| |OM|=
3
即可.
解法2:利用弦長公式|AB|=
1+K2
|x1-x2|=
1+K2
4k2+8
=2
6
.及點(diǎn)到直線的距離公式可得h=
1
2
.利用S△AOB=
1
2
|AB|•h=
3
.即可.
解答:解:(1)顯然直線l的斜率必存在,設(shè)直線l的方程為y=kx-1,A(x1,y1),B(x2,y2),
y=kx-1
y=-
x2
2
得x2+2kx-2=0,
∴x1+x2=-2k,x1x2=-2.
y1
x1
+
y2
x2
=1
,
kx1-1
x1
+
kx2-1
x2
=2k-
x1+x2
x1x2
=2k-
-2k
-2
=1
,解得k=1
所以直線l的方程為y=x-1.
(2)解法1:∵|x1-x2|=
4k2+8
=2
3
,|OM|=1.
S△AOB=
1
2
|x1-x2| |OM|=
3

解法2:∵|AB|=
1+K2
|x1-x2|=
1+K2
4k2+8
=2
6

h=
1
2

S△AOB=
1
2
|AB|•h=
3
點(diǎn)評:熟練掌握直線與拋物線相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、斜率計算公式、弦長公式及其三角形的面積計算公式扥公式解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對稱的相異兩點(diǎn)A、B,則|AB|等于( 。
A、3
B、4
C、3
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=-x2+ax+
12
與直線y=2x
(1)求證:拋物線與直線相交;
(2)求當(dāng)拋物線的頂點(diǎn)在直線的下方時,a的取值范圍;
(3)當(dāng)a在(2)的取值范圍內(nèi)時,求拋物線截直線所得弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+bx+c在其上一點(diǎn)(1,2)處的切線與直線y=x-2平行,則b、c的值分別為
-1、2
-1、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+4ax-4a+3,y=x2+2ax-2a至少有一條與x軸相交,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2上有一定點(diǎn)A(-1,1)和兩動點(diǎn)P、Q,當(dāng)PA⊥PQ時,點(diǎn)Q的橫坐標(biāo)取值范圍是( 。
A、(-∞,-3]B、[1,+∞)C、[-3,1]D、(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案