【題目】如圖,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.現(xiàn)以邊AC的中點D為坐標原點,平面ABC內(nèi)垂直于AC的直線為軸,直線AC為軸,直線DA1為軸建立空間直角坐標系,解決以下問題:
(1)求異面直線AB與A1C所成角的余弦值;
(2)求直線AB與平面A1BC所成角的正弦值.
【答案】(1);(2).
【解析】
(1)以邊AC的中點D為坐標原點,平面ABC內(nèi)垂直于AC的直線為x軸,直線AC為y軸,直線DA1為z軸建立空間直角坐標系,利用向量法能求出異面直線AB與A1C所成角的余弦值.
(2)求出平面A1BC的法向量,利用向量法能求出直線AB與平面A1BC所成角的正弦值.
(1)三棱柱ABC﹣A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.
以邊AC的中點D為坐標原點,
平面ABC內(nèi)垂直于AC的直線為x軸,
直線AC為y軸,直線DA1為z軸建立空間直角坐標系,
根據(jù)題中空間直角坐標系可知:
A(0,﹣1,0),C(0,1,0),B(2,1,0),A1(0,0,),
∴=(2,2,0),=(0,1,﹣),
∴cos<>===,
設異面直線AB與A1C的所成角為α,則,
∴異面直線AB與A1C所成角的余弦值為.
(2)由(1)得:=(2,1,﹣),=(﹣2,0,0),
設平面A1BC的法向量為=(x,y,z),
∴,取z=1,則=(0,),
∴cos<,>===.
設直線AB與平面A1BC所成角為β,β∈(0,],
則sinβ=|cos<,>|=.
故直線AB與平面A1BC所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F為PC的中點,AF⊥PB.
(1)求PA的長;
(2)求二面角B﹣AF﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正數(shù)數(shù)列的前n項和為,滿足,.
(1)求數(shù)列的通項公式,若恒成立,求k的范圍;
(2)設,若是遞增數(shù)列,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),。
Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
Ⅱ.當時,方程恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;
Ⅲ.將函數(shù)的圖象向右平移個單位后所得函數(shù)的圖象關于原點中心對稱,求的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】江蘇省園博會有一中心廣場,南京園,常州園都在中心廣場的南偏西45°方向上,到中心廣場的距離分別為km,km;揚州園在中心廣場的正東方向,到中心廣場的距離為km.規(guī)劃建設一條筆直的柏油路穿過中心廣場,且將南京園,常州園,揚州園到柏油路的最短路徑鋪設成鵝卵石路(如圖(1)、(2)).已知鋪設每段鵝卵石路的費用(萬元)與其長度的平方成正比,比例系數(shù)為2.設柏油路與正東方向的夾角,即圖(2)中∠COF為((0,)),鋪設三段鵝卵石路的總費用為y(萬元).
(1)求南京園到柏油路的最短距離關于的表達式;
(2)求y的最小值及此時tan的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校調(diào)查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學生中每周的自習時間不少于22.5小時的人數(shù)是
A. 56 B. 60 C. 120 D. 140
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com