【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù), 得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取 2 組,用剩下的 4 組數(shù)據(jù)求 線性回歸方程,再用被選取的 2 組數(shù)據(jù)進行檢驗;

(Ⅰ)求選取的 2 組數(shù)據(jù)恰好是相鄰兩個月的概率;

(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程 ;

(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人, 則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

附:對于一組數(shù)據(jù), ,…,( ,其回歸直線 的斜率和截距的最小二乘估計分別為

, .

【答案】(1)

(2).

(3)小組所得線性回歸方程是理想的.

【解析】分析組數(shù)據(jù)種選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩個月的數(shù)據(jù)的情況有種,利用古典概型概率公式可得結(jié)果;Ⅱ)由所給數(shù)據(jù)求得,由公式求得,再由求得,從而可得結(jié)果;(利用所求回歸方程,時,當時,分別求出對應(yīng)的的值,即可判斷所得線性回歸方程是否理想.

詳解(Ⅰ)設(shè)抽到相鄰兩個月的數(shù)據(jù)為事件,因為從6組數(shù)據(jù)種選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩個月的數(shù)據(jù)的情況有5種,所以

(Ⅱ)由數(shù)據(jù)求得由公式求得,再由求得

所以關(guān)于的線性回歸方程為

(Ⅲ)當時,

同樣,當時,

所以,該小組所得線性回歸方程是理想的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)令,可將已知三角函數(shù)關(guān)系轉(zhuǎn)換成代數(shù)函數(shù)關(guān)系,試寫出函數(shù)的解析式及定義域;

(2)求函數(shù)的最大值;

(3)函數(shù)在區(qū)間內(nèi)是單調(diào)函數(shù)嗎?若是,請指出其單調(diào)性;若不是,請分別指出其單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間(不需要證明).

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點, ,且圓心在直線.

(1)求圓的方程;

(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機對入院50人進行了問卷調(diào)查,得到了如表的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(1)請將上面的列聯(lián)表補充完整;

(2)是否有99%的把握認為患心肺疾病與性別有關(guān)?說明你的理由.

參考格式:,其中.

下面的臨界值僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xoy中,曲線C1 (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點的直角坐標;
(Ⅱ)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】重慶一中為了增強學(xué)生的記憶力和辨識力,組織了一場類似《最強大腦》的賽,兩隊各由4名選手組成,每局兩隊各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設(shè)每局比賽隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時隊的得分高于隊的得分的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中政教處為了調(diào)查學(xué)生對一帶一路的關(guān)注情況,在全校組織了一帶一路知多少的知識問卷測試,并從中隨機抽取了12份問卷,得到其測試成績(百分制)的莖葉圖如下:.

(1)寫出該樣本的中位數(shù),若該校共有3000名學(xué)生,試估計該校測試成績在70分以上的人數(shù);

(2)從所抽取的70分以上的學(xué)生中再隨機選取4人,記表示測試成績在80分以上的人數(shù),的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)Z1 , Z2在復(fù)平面內(nèi)對應(yīng)的點分別為A(﹣2,1),B(a,3).
(1)若|Z1﹣Z2|= ,求a的值.
(2)復(fù)數(shù)z=Z1Z2對應(yīng)的點在二、四象限的角平分線上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象(

A. 所有點的橫坐標伸長到原來的2(縱坐標不變), 再將所得的圖像向左平移個單位.

B. 所有點的橫坐標伸長到原來的2(縱坐標不變), 再將所得的圖像向左平移個單位.

C. 所有點的橫坐標縮短到原來的(縱坐標不變), 再將所得的圖像向左平移個單位.

D. 所有點的橫坐標縮短到原來的(縱坐標不變), 再將所得的圖像向左平移個單位.

查看答案和解析>>

同步練習(xí)冊答案