【題目】已知函數(shù).
(Ⅰ)若曲線在處的切線與直線垂直,求的值;
(Ⅱ)當(dāng)時(shí),求證:存在實(shí)數(shù)使.
【答案】(Ⅰ);(Ⅱ)見(jiàn)解析.
【解析】試題分析:(1)先根據(jù)題意可得處的切線的斜率為2,從而求得a(2)對(duì)于存在問(wèn)題可根據(jù)題意賦值驗(yàn)證,當(dāng)時(shí),顯然有,即存在實(shí)數(shù)使;當(dāng)時(shí)分析函數(shù)單調(diào)性,得函數(shù)最小值,若最小值小于1即得證
試題解析:
(Ⅰ),
因?yàn)榍在處的切線與直線垂直,
所以切線的斜率為2,
所以,
所以.
(Ⅱ)法1:當(dāng)時(shí),顯然有,即存在實(shí)數(shù)使;
當(dāng)時(shí),由可得,
所以在時(shí), ,所以函數(shù)在上遞減;
時(shí), ,所以函數(shù)在上遞增
所以 是的極小值.
由函數(shù)可得,
由可得,
所以,
綜上,若,存在實(shí)數(shù)使.
(Ⅱ)法2:當(dāng)時(shí),顯然有,即存在實(shí)數(shù)使;
當(dāng)時(shí),由可得,
所以在時(shí), ,所以函數(shù)在上遞減;
時(shí), ,所以函數(shù)在上遞增.
所以 是的極小值.
設(shè),則,令,得
+ | 0 | - | |
↗ | 極大值 | ↘ |
所以當(dāng)時(shí),
所以,
綜上,若,存在實(shí)數(shù)使.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使CD=AC,連接AD交⊙O于點(diǎn)E,連接BE與AC交于點(diǎn)F.
(1)判斷BE是否平分∠ABC,并說(shuō)明理由;
(2)若AE=6,BE=8,求EF的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過(guò)橢圓的焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線交橢圓于兩點(diǎn),為弦的中點(diǎn),,記直線的斜率分別為,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點(diǎn)D是BC的中點(diǎn).
(1)求證:A1B∥平面ADC1;
(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1與ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為感謝全體員工的辛勤勞動(dòng),決定在年終答謝會(huì)上,通過(guò)摸球方式對(duì)全公司1000位員工進(jìn)行現(xiàn)金抽獎(jiǎng)。規(guī)定:每位員工從裝有4個(gè)相同質(zhì)地球的袋子中一次性隨機(jī)摸出2個(gè)球,這4個(gè)球上分別標(biāo)有數(shù)字、、、,摸出來(lái)的兩個(gè)球上的數(shù)字之和為該員工所獲的獎(jiǎng)勵(lì)額(單位:元)。公司擬定了以下三個(gè)數(shù)字方案:
方案 | ||||
一 | 100 | 100 | 100 | 500 |
二 | 100 | 100 | 500 | 500 |
三 | 200 | 200 | 400 | 400 |
(Ⅰ)如果采取方案一,求的概率;
(Ⅱ)分別計(jì)算方案二、方案三的平均數(shù)和方差,如果要求員工所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,方案二和方案三選擇哪個(gè)更好?
(Ⅲ)在投票選擇方案二還是方案三時(shí),公司按性別分層抽取100名員工進(jìn)行統(tǒng)計(jì),得到如下不完整的列聯(lián)表。請(qǐng)將該表補(bǔ)充完整,并判斷能否有90%的把握認(rèn)為“選擇方案二或方案三與性別有關(guān)”?
方案二 | 方案三 | 合計(jì) | |
男性 | 12 | ||
女性 | 40 | ||
合計(jì) | 82 | 100 |
附:
0.15 | 0.10 | 0.05 | |
2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|
(1)當(dāng)a=2時(shí),解不等式f(x)≥4.
(2)若不等式f(x)≥2a恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義在R上的偶函數(shù)f(x),滿足對(duì)任意x∈R都有f(t)=f(2﹣t)且x∈(0,1]時(shí),f(x)= ,a=f( ),b=f( ),c=f( ),用“<“表示a,b,c的大小關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)隨機(jī)選取了名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問(wèn)題.
(Ⅰ)求的值及樣本中男生身高在(單位: )的人數(shù);
(Ⅱ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,通過(guò)樣本估計(jì)該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在和(單位: )內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某媒體為了解某地區(qū)大學(xué)生晚上放學(xué)后使用手機(jī)上網(wǎng)情況,隨機(jī)抽取了100名大學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每晚使用手機(jī)上網(wǎng)平均所用時(shí)間的頻率分布直方圖.將時(shí)間不低于40分鐘的學(xué)生稱為“手機(jī)迷”.
(1)樣本中“手機(jī)迷”有多少人?
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量大學(xué) 生中,采用隨機(jī)抽樣方法每次抽取1名大學(xué)生,抽取3次,經(jīng)調(diào)查一名“手機(jī)迷”比“非手機(jī)迷”每月的話費(fèi)平均多40元,記被抽取的3名大學(xué)生中的“手機(jī)迷”人數(shù)為X,且設(shè)3人每月的總話費(fèi)比“非手機(jī)迷”共多出Y元,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和Y的期望EY
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com