已知5只動物中有且僅有1只患病,需要通過化驗血液確定患病動物.血檢呈陽性即為患病,否則沒患。F(xiàn)有以下兩種驗血方案,每種驗血方案都直到檢驗出某動物血液呈陽性為止.
甲:逐個隨機檢驗.
乙:先任取3只,將它們的血液混在一起化驗,若呈陽性,表明患病動物在這3只之中,再對這3只逐個隨機檢驗;否則,在另外兩只中逐個隨機檢驗.
①甲、乙哪個方案能更快檢驗出患病動物;
②求依方案乙所需檢驗次數(shù)不多于依方案甲所需檢驗次數(shù)的概率.
分析:①甲方案檢到某動物血液呈陽性所需要檢驗次數(shù)為ξ,乙方案檢到某動物血液呈陽性所需要檢驗次數(shù)為η,根據(jù)題意寫出兩個變量的可能取值,結合事件寫出概率,分布列和期望,比較兩種方法的快慢,得到結論.
②方案乙所需檢驗次數(shù)不多于方案甲所需檢驗次數(shù),包含三種情況,這三種情況是互斥的,根據(jù)互斥事件的概率寫出結果.
解答:解:①甲方案檢到某動物血液呈陽性所需要檢驗次數(shù)為ξ,
乙方案檢到某動物血液呈陽性所需要檢驗次數(shù)為η,
依題意,
其中
p(η=2)=×+×=0.4,
p(η=3)=××+××=0.4p(η=4)=×××=0.2.
Eξ=3,Eη=2.8.Eη<Eξ,
∴乙方案能更快檢驗出患病動物.
②
p(η≤ξ)=0.2×(+)+0.4×(++)+0.4×(+++)=0.64,
即依方案乙所需檢驗次數(shù)不多于依方案甲所需檢驗次數(shù)的概率為0.64.
點評:本題是不同概型、不同隨機變量分析比較的概率問題,解題的關鍵是確定隨機變量及其分布列,知道是對哪個數(shù)字特征進行比較,再相應地計算比較.本題僅適合理科學生.