在正方形SG1G2G3中,E、F分別是G1G2、G2G3的中點,現(xiàn)沿SE、SF、EF把這個正方形折成一個四面體,使G1、G2、G3重合為點G,則有(  )
A.SG⊥面EFGB.EG⊥面SEF
C.GF⊥面SEFD.SG⊥面SEF
A
解:∵在折疊過程中,始終有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,所以SG⊥平面EFG.
故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知平面是正三角形,且.

(1)設是線段的中點,求證:∥平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正方體中,中點,則與平面所成角的正弦值為           ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題6分)已知圓臺的母線長為4 cm,母線與軸的夾角為30°,上底面半徑是下底面半徑的,求這個圓臺的側面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在棱柱中滿足 (  )
A.只有兩個面平行B.所有面都平行
C.所有面都是平行四邊形D.兩對面平行,且各側棱也相互平行

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正三棱錐內有一個內切球,經過棱錐的一條側棱和高作截面,正確的圖是 (  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐的底面是正方形,⊥底面,上的任意一點。

(1)求證:平面
(2)設,,求點到平面的距離
(3)求的值為多少時,二面角的大小為120°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

、如圖是一個棱長為1的無蓋正方體盒子的平面展開圖,A、B、C、D為其上四個點,以A、B、C、D為頂點的三棱錐的體積為              。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A、B、C三點在球心為,半徑為3的球面上,且三棱錐—ABC為正四面體,那么A、B兩點間的球面距離為
A、   B、   C、 D、

查看答案和解析>>

同步練習冊答案