【題目】如圖,四邊形ABCD為矩形,平面ABCD⊥平面ABE,FCE的中點,且AEBE

1)求證:AE∥平面BFD

2)求證:BFAE

【答案】(1)見解析;(2)見解析

【解析】

E為原點,EBx軸,EAy軸,過E作平面ABE的垂線為z軸,建立空間直角坐標(biāo)系,(1)設(shè)出的長表示出各點坐標(biāo),由直線的方向向量與平面的法向量垂直得證線面平行;

2)直接由方向向量垂直得兩直線垂直.

1)以E為原點,EBx軸,EAy軸,過E作平面ABE的垂線為z軸,建立空間直角坐標(biāo)系,

由于平面平面,,是這兩個平面的交線,都在平面上,所以平面,平面,所以軸,軸,

設(shè)BEa,AEb,ADc,則A0b,0),E0,0,0),F),Ba,0,0),D0,b,c),

0,﹣b,0),,0),(﹣ab,c),設(shè)平面BDF的法向量xy,z),

,取xc,得c,0a),∵AE平面BDE0,

AE∥平面BFD

2)∵0,﹣b,0),,0,),∴0,∴BFAE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若存在極小值點,且,其中,求證: ;

(Ⅲ)試問過點可作多少條直線與的圖像相切?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】箱子中有形狀、大小都相同的3只紅球,2只白球,從中一次摸出2只球.

1)求摸到的2只球顏色不同的概率:

2)求摸到的2只球中至少有1只紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足

(1)若,求證:存在ab,c為常數(shù)),使數(shù)列是等比數(shù)列,并求出數(shù)列{an}的通項公式;

(2)若an 是一個等差數(shù)列{bn}的前n項和,求首項a1的值與數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐中,平面,,是邊長為2的等邊三角形,,的中點.

1)求證:;

2)若直線與平面所成角的正切值為2,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的個數(shù)為(

①兩個有共同始點且相等的向量,其終點可能不同;

②若非零向量共線,則、、四點共線;

③若非零向量共線,則;

④四邊形是平行四邊形,則必有

,則方向相同或相反.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某親子游戲結(jié)束時有一項抽獎活動,抽獎規(guī)則是:盒子里面共有4個小球,小球上分別寫有0,1,2,3的數(shù)字,小球除數(shù)字外其他完全相同,每對親子中,家長先從盒子中取出一個小球,記下數(shù)字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數(shù)字將小球放回.抽獎活動的獎勵規(guī)則是:若取出的兩個小球上數(shù)字之積大于4,則獎勵飛機玩具一個;若取出的兩個小球上數(shù)字之積在區(qū)間上,則獎勵汽車玩具一個;若取出的兩個小球上數(shù)字之積小于1,則獎勵飲料一瓶.

1)求每對親子獲得飛機玩具的概率;

2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求k的值;

2)若方程有實數(shù)根,求b的取值范圍;

3)設(shè),若函數(shù)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案