【題目】我國古代數(shù)學(xué)專著《九章算術(shù)》中有一個“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為( 。

A. 3B. 4C. 5D. 6

【答案】C

【解析】

代入,按照流程圖一步一步進行計算,即可得到輸出的.

1步:T2,S2,S20成立,a2,b=,n=2,

2步:T,S,S20成立,a4,b=,n=3

3步:TS,S20成立,a8,b=,n=4,

4步:T,S,S20成立,a16b=,n=5,

5步:T,SS20不成立,退出循環(huán),輸出n=5,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等制劃分標(biāo)準(zhǔn)為:85分及以上,記為等;分?jǐn)?shù)在內(nèi),記為等;分?jǐn)?shù)在內(nèi),記為等;60分以下,記為等.同時認(rèn)定為合格, 為不合格.已知甲,乙兩所學(xué)校學(xué)生的原始成績均分布在內(nèi),為了比較兩校學(xué)生的成績,分別抽取50名學(xué)生的原始成績作為樣本進行統(tǒng)計,按照的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級為的所有數(shù)據(jù)莖葉圖如圖2所示.

(Ⅰ)求圖1中的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;

(Ⅱ)在選取的樣本中,從甲,乙兩校等級的學(xué)生中隨機抽取3名學(xué)生進行調(diào)研,用表示所抽取的3名學(xué)生中甲校的學(xué)生人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,垂直于所在的平面,的直徑,是弧上的一個動點(不與端點重合),上一點,且是線段上的一個動點(不與端點重合).

(1)求證:平面;

(2)若是弧的中點,是銳角,且三棱錐的體積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,若直線于點,點是直線上的一動點,是線段的中點,且,點的軌跡為曲線

(1)求曲線的方程;

(2)過點作直線于點,交軸于點,過作直線于點.試判斷是否為定值?若是,求出其定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱椎中,側(cè)棱底面,,,分別是線段,的中點,過線段的中點的平行線,分別交于點.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓的圓心為,半徑為.以極點為原點,極軸方向為軸正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫出圓的極坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與圓交于兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個半圓形湖面景點的平面示意圖.已知為直徑,且km,為圓心,為圓周上靠近的一點,為圓周上靠近的一點,且.現(xiàn)在準(zhǔn)備從經(jīng)過建造一條觀光路線,其中是圓弧是線段.設(shè),觀光路線總長為.

1)求關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

2)求觀光路線總長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機對心肺疾病入院的人進行問卷調(diào)查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

合計

(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中選人,求恰好有名女性的概率;

(3)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量,你有多大把握認(rèn)為心肺疾病與性別有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中

(1)若,求的值;

(2)對于每一個給定的正整數(shù),求關(guān)于的方程所有解的集合.

查看答案和解析>>

同步練習(xí)冊答案