△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知A-C=90°,a+c=數(shù)學(xué)公式b,求C.

解:由A-C=90°,得A=C+90°,B=π-(A+C)=90°-2C(事實上0°<C<45°),
由a+c=b,根據(jù)正弦定理有:sinA+sinC=,∴sin(90°-2C),
即cosC+sinC=(cosC+sinC)(cosC-sinC),
∵cosC+sinC≠0,∴cosC-sinC=,C+45°=60°,∴C=15°.
分析:由三角形的內(nèi)角和公式可得 B=π-(A+C)=90°-2C,根據(jù)正弦定理有:sinA+sinC=,化簡可得cos(C+45°)=,由此求出銳角C的大。
點評:本題考查正弦定理的應(yīng)用,三角形的內(nèi)角和公式,判斷三角形的形狀的方法,得到cos(C+45°)=,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=
14

(Ⅰ)求△ABC的周長;
(Ⅱ)求cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山二模)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,△ABC的面積S=
3
4
(c2-a2-b2)

(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=
3
,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寶坻區(qū)一模)設(shè)函數(shù)f(x)=sinx+cos(x+
π
6
),x∈R
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(A)=
3
2
,且a=
3
2
b
,求角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,三邊長a、b、c成等比數(shù)列,且a2=c2+ac-bc,則
asinB
b
的值為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知△ABC的內(nèi)角A、B、C所對的邊分別是a、b、c,若3a2+2ab+3b2-3c2=0,則角C的大小是
π-arccos
1
3
π-arccos
1
3

查看答案和解析>>

同步練習(xí)冊答案