【題目】已知圓過(guò)點(diǎn),且與圓外切于點(diǎn),過(guò)點(diǎn)作圓的兩條切線(xiàn),,切點(diǎn)為,

1)求圓的標(biāo)準(zhǔn)方程;

2)試問(wèn)直線(xiàn)是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo).

【答案】(1);(2)定點(diǎn),理由見(jiàn)解析

【解析】

1)由題意可知圓的圓心在軸上,設(shè)半徑,求出圓心,寫(xiě)出圓的方程,代點(diǎn)即可求出圓的方程;

2)由題意可得,則、四點(diǎn)共以為直徑的圓,寫(xiě)出圓的方程,求出兩圓公共弦所在直線(xiàn)方程,求出定點(diǎn).

1)由題意可知圓的圓心在軸上,設(shè)半徑為,則圓心,

故圓的標(biāo)準(zhǔn)方程為.因?yàn)閳A過(guò)點(diǎn),所以,解得

故圓的標(biāo)準(zhǔn)方程為

2)由題意可得,則,,四點(diǎn)共圓,且該圓以為直徑,圓心坐標(biāo)為

故該圓的方程是,即

因?yàn)閳A的方程為,所以公共弦所在直線(xiàn)方程為,

整理得

解得,故直線(xiàn)過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把半橢圓與圓弧合成的曲線(xiàn)稱(chēng)作曲圓,其中F為半橢圓的右焦點(diǎn),A是圓弧x軸的交點(diǎn),過(guò)點(diǎn)F的直線(xiàn)交曲圓P,Q兩點(diǎn),則的周長(zhǎng)取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面是等腰梯形,,,.

(Ⅰ)證明:平面平面;

(Ⅱ)點(diǎn)是棱上一點(diǎn),且平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓ab0)的左右焦點(diǎn)分別為F1,F2,圖象經(jīng)過(guò)點(diǎn)A2,0)和點(diǎn)B0,)過(guò)F2與坐標(biāo)軸不垂直的直線(xiàn)l與橢圓C交于P,Q兩點(diǎn),NPQ的中點(diǎn).

1)求橢圓C的方程;

2)設(shè)點(diǎn),且MNPQN,求直線(xiàn)PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,是正三角形,面,,分別是、的中點(diǎn).

1)證明:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左右焦點(diǎn)恰好是等軸雙曲線(xiàn)的左右頂點(diǎn),且橢圓的離心率為,是雙曲線(xiàn)上異于頂點(diǎn)的任意一點(diǎn),直線(xiàn)與橢圓的交點(diǎn)分別記為、

1)求橢圓的方程;

2)設(shè)直線(xiàn)、的斜率分別為,求證:為定值;

3)若存在點(diǎn)滿(mǎn)足,試求的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動(dòng),湖南、廣東、湖北等8省市開(kāi)始實(shí)行新高考制度,從2018年下學(xué)期的高一年級(jí)學(xué)生開(kāi)始實(shí)行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng),在成績(jī)統(tǒng)計(jì)分析中,高二某班的數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

1)求該班數(shù)學(xué)成績(jī)?cè)?/span>的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計(jì)該班這次測(cè)評(píng)的數(shù)學(xué)平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四9年來(lái)一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場(chǎng)年養(yǎng)殖數(shù)量y(單位:萬(wàn)只)與相成年份x(序號(hào))的數(shù)據(jù)表和散點(diǎn)圖(如圖所示),根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場(chǎng)的個(gè)數(shù)z(單位:個(gè))關(guān)于x的回歸方程.

(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線(xiàn)性回歸方程(參考統(tǒng)計(jì)量:);

(2)試估計(jì):①該縣第一年養(yǎng)殖山羊多少萬(wàn)只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

同步練習(xí)冊(cè)答案