已知圓C過點M(0,-2),N(3,1),且圓心C在直線x+2y+1=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)問是否存在滿足以下兩個條件的直線l:①斜率為1;②直線被圓C截得的弦為AB,以AB為直徑的圓C1過原點.若存在這樣的直線,請求出其方程;若不存在,說明理由.
(Ⅰ)設圓C的方程為x2+y2+Dx+Ey+F=0
-
D
2
-E+1=0
4-2E+F=0
10+3D+E+F=0
解得D=-6,E=4,F(xiàn)=4
∴圓C方程為x2+y2-6x+4y+4=0----------------------(5分)
(Ⅱ)設直線存在,其方程為y=x+b,它與圓C的交點設為A(x1,y1)、B(x2,y2),
則由
x2+y2-6x+4y+4=0
y=x+b
得2x2+2(b-1)x+b2+4b+4=0(*)
x1+x2=1-b
x1x2=
b2+4b+4
2
----------------------------(7分)
∴y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2,
∵AB為直徑,∴,∠AOB=90°,∴OA2+OB2=AB2,
x12+y12+x22+y22=(x1-x2)2+(y1-y2)2
得x1x2+y1y2=0,---------------------------------(9分)
2x1x2+b(x1+x2)+b2=0
即b2+4b+4+b(1-b)+b2=0,b2+5b+4=0,∴b=-1或b=-4-----------(11分)
容易驗證b=-1或b=-4時方程(*)有實根.
故存在這樣的直線l有兩條,其方程是y=x-1或y=x-4.--------------------(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點A、B分別是橢圓
x2
36
+
y2
20
=1
的長軸的左、右端點,F(xiàn)為橢圓的右焦點,直線PF的方程為
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直線PA的方程;
(Ⅱ)設M是橢圓長軸AB上的一點,M到直線AP的距離等于|MB|,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點F1(-
3
,0),F(xiàn)2
3
,0),動點R在曲線C上運動且保持|RF1|+|RF2|的值不變,曲線C過點T(0,1),
(Ⅰ)求曲線C的方程;
(Ⅱ)M是曲線C上一點,過點M作斜率分別為k1和k2的直線MA,MB交曲線C于A、B兩點,若A、B關于原點對稱,求k1•k2的值;
(Ⅲ)直線l過點F2,且與曲線C交于PQ,有如下命題p:“當直線l垂直于x軸時,△F1PQ的面積取得最大值”.判斷命題p的真假.若是真命題,請給予證明;若是假命題,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

以拋物線y2=4x的焦點為右焦點的橢圓,上頂點為B2,右頂點為A2,左、右焦點為F1、F2,且|
F1B2
|cos∠B2F1F2=
3
3
|
OB2
|,過點D(0,2)的直線l,斜率為k(k>0),l與橢圓交于M,N兩點.
(1)求橢圓的標準方程;
(2)若M,N的中點為H,且
OH
A2B2
,求出斜率k的值;
(3)在x軸上是否存在點Q(m,0),使得以QM,QN為鄰邊的四邊形是個菱形?如果存在,求出m的范圍;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于直線L:y=kx+1是否存在這樣的實數(shù),使得L與雙曲線C:3x2-y2=1的交點A,B關于直線y=ax(a為常數(shù))對稱?若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
2
+y2=1
的左、右焦點分別為F1,F(xiàn)2,下頂點為A,點P是橢圓上任一點,⊙M是以PF2為直徑的圓.
(Ⅰ)當⊙M的面積為
π
8
時,求PA所在直線的方程;
(Ⅱ)當⊙M與直線AF1相切時,求⊙M的方程;
(Ⅲ)求證:⊙M總與某個定圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C以雙曲線
x2
3
-y2=1
的焦點為頂點,以雙曲線的頂點為焦點.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于點M,N兩點(M,N不是左右頂點),且以線段MN為直徑的圓過橢圓C左頂點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,A1、A2、F1、F2分別是雙曲線C:
x2
9
-
y2
16
=1的左、右頂點和左、右焦點,M(x0、y0)是雙曲線C上任意一點,直線MA2與動直線l:x=
9
x0
相交于點N.
(1)求點N的軌跡E的方程;
(2)點B為曲線E上第一象限內(nèi)的一點,連接F1B交曲線E于另一點D,記四邊形A1A2BD對角線的交點為G,證明:點G在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,M是平行四邊形ABCD的邊AB的中點,直線l過點M分別交AD,AC于點E,F(xiàn),交CB的延長線于點N.若AE=2,AD=6,則=________.

查看答案和解析>>

同步練習冊答案