定義:min{a,b}=
a,a≤b
b,a>b
,在區(qū)域
0≤x≤2
0≤y≤6
內(nèi)任取一點P(x,y),則x、y滿足min{x2+x+2y,x+y+4}=x2+x+2y的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:本題是一個幾何概型,試驗包含的所有事件對應(yīng)的集合Ω={(x,y)|0≤x≤2,0≤y≤6},滿足條件的事件A={(x,y)|0≤x≤2,0≤y≤6,x2+x+2y≤x+y+4},算出兩個集合對應(yīng)的面積,面積之比就是要求的概率.
解答: 解:本題是一個幾何概型,
∵試驗包含的所有事件對應(yīng)的集合Ω={(x,y)|0≤x≤2,0≤y≤6},
∴SΩ=2×6=12,
∵滿足條件的事件A={(x,y)|0≤x≤2,0≤y≤6,x2+x+2y≤x+y+4},即A={(x,y)|0≤x≤2,0≤y≤6,y≤4-x2},
∴SA=
2
0
(4-x2)dx=(4x-
1
3
x3
|
2
0
=
16
3
,
∴由幾何概型公式得到P=
16
3
2×6
=
4
9

故答案為:
4
9
點評:本題以二元一次不等式組表示的平面區(qū)域為例,求幾何概型的概率,著重考查了簡單線性規(guī)劃和幾何概型的概率求法等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD是一個觀光區(qū)的平面示意圖,建立平面直角坐標系,使頂點A在坐標原點O,B,D分別在x軸,y軸上,AD=3百米,AB=a百米(3≤a≤4)觀光區(qū)中間葉形陰影部分MN是一個人工湖,它的左下方邊緣曲線是函數(shù)y=
2
x
(1≤x≤2)的圖象的一段.為了便于游客觀光,擬在觀光區(qū)鋪設(shè)一條穿越該觀光區(qū)的直路(寬度不計),要求其與人工湖左下方邊緣曲線段M,)N相切(切點記為P),并把該觀光區(qū)分為兩部分,且直線/左下部分建設(shè)為花圃.設(shè)點j′到的AD距離為t,f(t)表示花圃的面積.
(1)求花圃面積f(t)的表達式;
(2)求f(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,若a3+a4+a5=12,則a1+a2+…+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)在今年初貸款a萬元,年利率為r,從今年末開始,每年末償還x萬元,預(yù)計恰好5年內(nèi)還清,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c且acosC+
1
2
c=b,則角A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線M:y2=4x,圓N:(x-1)2+y2=r2(其中r為常數(shù),r>0).過點(1,0)的直線l交圓N于C、D兩點,交拋物線M于A、B兩點,且滿足|AC|=|BD|的直線l只有三條的必要條件是:下面哪一個是符合條件的
 

(1)r∈(0,1]
(2)r∈(1,2]
(3)r∈(
3
2
,4)
(4)r∈[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-1
x2+x+2
(x>1)
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tan280°=a,則sin80°的結(jié)果為( 。
A、-
1
a
B、
a
1+a2
C、-
a
1+a2
D、-
1
1+a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解本市的交通狀況,某校高一年級的同學(xué)分成了甲、乙、丙三個組,從下午13點到18點,分別對三個路口的機動車通行情況進行了實際調(diào)查,并繪制了頻率分布直方圖(如圖),記甲、乙、丙三個組所調(diào)查數(shù)據(jù)的標準差分別為s1,s2,s3,則它們的大小關(guān)系為( 。
A、s1>s2>s3
B、s1>s3>s2
C、s2>s3>s1
D、s3>s2>s1

查看答案和解析>>

同步練習(xí)冊答案