關于平面向量
a
,
b
c
.有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的個數(shù)有( 。
分析:取特殊向量
a
、
b
、
c
,計算數(shù)量積,可得①不正確;根據(jù)向量平行的坐標運算,得到②正確;設|
a
|=|
b
|=|
a
-
b
|=λ,則可算出
a
b
=
1
2
λ2,
a
•(
a
+
b
)=λ2+
1
2
λ2=
3
2
λ2,|
a
+
b
|=
3
λ,利用向量夾角公式可得
a
a
+
b
的夾角為30°,得到③不正確.由此可得正確選項.
解答:解:對于①,取
a
=(1,0),
b
=(2,2),
c
=(2,-3),
a
b
=
a
c
=2,但是
b
c
,故①不正確;
對于②,若
a
b
,則1×6=k×(-2),解之得k=-3.故②正確;
對于③設|
a
|=|
b
|=|
a
-
b
|=λ,則|
a
-
b
|2=(
a
-
b
22,可得
a
b
=
1
2
λ2,
a
•(
a
+
b
)=λ2+
1
2
λ2=
3
2
λ2,|
a
+
b
|=
3
λ,
可得則
a
a
+
b
的夾角θ滿足cosθ=
a
•(
a
+
b
)
|a|
|
a
+
b
|
=
3
2
,所以θ=30°,故③不正確.
綜上所述,正確的只有②
故選B
點評:本題以命題真假的判斷與應用為載體,考查了向量的數(shù)量積運算、向量平行的充要條件和向量模與夾角公式等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

關于平面向量
a
,
b
,
c
,有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c
、
②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的序號為
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于平面向量
a
,
b
,
c
,有下列命題:
①(
a
b
c
-(
c
a
b
=0
②|
a
|-|
b
|<|
a
-
b
|;
③(
b
c
a
-(
c
a
b
不與
c
垂直;
④非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
-
b
的夾角為60°.
其中真命題的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于平面向量
a
,
b
,
c
,有下列四個命題( 。
①若
a
b
.
a
0
則?λ∈R,使得
b
a

.
a
.
b
=0,則
a
=
o
b
=
0

③若
.
a
=(1,k),
b
=(-2,6),
.
a
b
則,k=-3
④若
a
b
=
a
c
 則
a
⊥(
b
-
c
)
,其中正確命題序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于平面向量
a
,
b
,
c
.有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6)
,
a
b
,則k=-3;
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°.
其中真命題的序號為
②③
②③
.(寫出所有真命題的序號)

查看答案和解析>>

同步練習冊答案