α∈(0,π),若
sinα-cosα i
sinα+cosα i
∈R
,則α=(  )
A、
π
3
B、
π
2
C、
3
D、不存在
分析:利用復數(shù)的運算法則求得
sinα-cosα i
sinα+cosα i
=(sinα-cosα i)2
展開后利用二倍角公式化簡整理,利用原式為實數(shù)求得sin2α的值,進而求得α.
解答:解:
sinα-cosα i
sinα+cosα i
=(sinα-cosα i)2=-cos2α-sin2α i∈R

α=
π
2

故選B
點評:本題主要考查了三角函數(shù)的化簡求值,復數(shù)的基本運算.考查了學生知識的綜合的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a,b,c為實數(shù),f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個數(shù),則下列結論不可能的是(  )
A、{S}=1且{T}=0B、{S}=1且{T}=1C、{S}=2且{T}=2D、{S}=2且{T}=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c為實數(shù),f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1)記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分別為集合S,T的元素個數(shù),則下列結論不可能的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波模擬)設a,b,c∈R,f(x)=(x+a)(2x2+bx+c),g(x)=(ax+1)(cx2+bx+2)記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R},若|S|,|T|分別為集合S,T的元素個數(shù),則下列4個結論中有可能正確的序號是
①②③
①②③

①|S|=1且|T|=0
②|S|=1且|T|=1
③|S|=2且|T|=2
④|S|=2且|T|=3.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:選擇題

設a,b,c為實數(shù),f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).

記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分別為集合S,T的元素個

數(shù),則下列結論不可能的是(  )

A.|S|=1且|T|=0                    B.|S|=1且|T|=1

C.|S|=2且|T|=2                  D.|S|=2且|T|=3

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年甘肅省高三第二次診斷性考試理科數(shù)學試卷 題型:選擇題

定義在R上的函數(shù)是增函數(shù),且函數(shù)的圖像關于(3,0)成中心對稱,若s,t滿足不等式,則時,則的范圍是(     )

A [-2,10]         B [4,16]             C [-2,16]          D [4,10]

 

查看答案和解析>>

同步練習冊答案