【題目】中國古代計時器的發(fā)明時間不晚于戰(zhàn)國時代(公元前476年~前222),其中沙漏就是古代利用機械原理設(shè)計的一種計時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細沙通過連接管道流到下部容器,如圖,某沙漏由上、下兩個圓錐容器組成,圓錐的底面圓的直徑和高均為8 cm,細沙全部在上部時,其高度為圓錐高度的(細管長度忽略不計).若細沙全部漏入下部后,恰好堆成一個蓋住沙漏底部的圓錐形沙堆,則此圓錐形沙堆的高為(   )

A.2 cmB. cmC. cmD. cm

【答案】D

【解析】

由題意知,求得細沙的體積,結(jié)合體積相等,即可求解,得到答案.

由題意知,開始時,沙漏上部分圓錐中的細沙的高,

底面圓的半徑,故細沙的體積,

當細沙漏入下部后,圓錐形沙堆的底面半徑為,

設(shè)高為,則,得,

故此錐形沙堆的高為.

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距與短軸長相等,長軸長為,設(shè)過右焦點F傾斜角為的直線交橢圓MA、B兩點.

(1)求橢圓M的方程;

(2)求證:

(3)設(shè)過右焦點F且與直線AB垂直的直線交橢圓MC、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項積為,滿足. 數(shù)列的首項為且滿足.

(1)求數(shù)列,的通項公式;

(2)記集合,若集合的元素個數(shù)為,求實數(shù)的取值范圍;

(3)是否存在正整數(shù)使得成立?如果存在,請寫出滿足的條件,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,點A為橢圓C的左頂點,點B為橢圓C的上頂點,且|AB|=,△BF1F2為直角三角形.

(1)求橢圓C的方程;

(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點,且OP⊥OQ,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將向量=(, ), =(, ),…=(,)組成的系列稱為向量列{},并定義向量列{}的前項和.如果一個向量列從第二項起,每一項與前一項的差都等于同一個向量,那么稱這樣的向量列為等差向量列。若向量列{}是等差向量列,那么下述四個向量中,與一定平行的向量是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,側(cè)棱與底面垂直的四棱柱ABCDA1B1C1D1的底面是梯形,ABCD,ABAD,AA14,DC2AB,ABAD3,點M在棱A1B1上,且A1MA1B1.已知點E是直線CD上的一點,AM∥平面BC1E.

(1)試確定點E的位置,并說明理由;

(2)求三棱錐M-BC1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,當時,滿足.

1)求證:

2)求證:數(shù)列為等差數(shù)列;

3)若,公差,問是否存在,使得?如果存在,求出所有滿足條件的,如果不在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐中,二面角的中點.

1)證明:;

2)已知為直線上一點,且不重合,若異面直線所成角為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列敘述正確的是(

A.命題pq為真,則恰有一個為真命題

B.命題已知,則的充分不必要條件

C.命題都有,則,使得

D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點

查看答案和解析>>

同步練習冊答案