已知集合P=[
1
2
,2],函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼.
(1)若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍;
(5)若方程log2(ax2-2x+2)=2在[
1
2
,2]內(nèi)有解,求實(shí)數(shù)a的取值范圍.
(1)若P∩Q≠Φ,則在[
1
2
,2]內(nèi)至少存在一個(gè)x使ax2-2x+2>0成立,
即a>-
2
x2
+
2
x
=-2(
1
x
-
1
2
2+
1
2
∈[-4,
1
2
],
∴a>-4(5分)
(2)方程log2(ax2-2x+2)=2在[
1
2
,2]
內(nèi)有解,則ax2-2x-2=0在[
1
2
,2]
內(nèi)有解,
即在[
1
2
,2]
內(nèi)有值使a=
2
x2
+
2
x
成立,
設(shè)u=
2
x2
+
2
x
=2(
1
x
+
1
2
)2-
1
2

當(dāng)x∈[
1
2
,2]
時(shí),u∈[
3
2
,12]
,
a∈[
3
2
,12]
,
∴a的取值范圍是
3
2
≤a≤12
.(10分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合P=[
1
2
,2],函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼.
(1)若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍;
(5)若方程log2(ax2-2x+2)=2在[
1
2
,2]內(nèi)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合P={x|
1
2
≤x≤3},函數(shù)f(x)=log2(ax2-2x+2)的定義域?yàn)镼,若P∩Q=[
1
2
,
3
2
),P∪Q=(-2,3]則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合P=[
1
2
,2]
,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼.
(1)若方程log2(ax2-2x+2)=2[
1
2
,2]
內(nèi)有解,求實(shí)數(shù)a的取值范圍.
(2)若P∩Q≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合p=[
1
2
,2]
,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼,
(1)若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍;
(2)若方程log2(ax2-2x+2)=2[
1
2
,2]
內(nèi)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案