【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域為,解不等式.

【答案】(1)奇函數(shù)(2)增函數(shù)(3)

【解析】試題分析:1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。

試題解析:1)函數(shù)為奇函數(shù).證明如下:

定義域為

為奇函數(shù)

2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:

任取,則

,

在(-1,1)上為增函數(shù)

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點睛

(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。

(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。

型】解答
結(jié)束】
22

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實數(shù)的值;

(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實數(shù)的取值范圍;

(3)若,且對任意的,都存在,使得成立,求實數(shù)的取值范圍.

【答案】(1)(2)(3)

【解析】試題分析:(1)先利用二次函數(shù)的性質(zhì)確定函數(shù)的單調(diào)遞減區(qū)間為,故單調(diào)遞減,然后由定義域與值域列出等式關(guān)系,從而求解即可;(2)由(1)可知,初步確定的取值范圍,然后確定時函數(shù)的最大值,從中求解不等式組即可;(3)將對任意的,都存在,使得成立轉(zhuǎn)化為時,的值域包含了的值域,然后進行分別求的值域,從集合間的包含關(guān)系即可求出的取值范圍.

試題解析:(1

上單調(diào)遞減,又,上單調(diào)遞減,

,,4

2在區(qū)間上是減函數(shù),

,

時,

對任意的,都有

,即,也就是

綜上可知8

3上遞增,上遞減,

當(dāng)時,

對任意的,都存在,使得成立

,所以13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內(nèi),若存在過點P的直線交圓C于A、B兩點,且△PBC的面積是△PAC的面積的2倍,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2eax
(Ⅰ)當(dāng)a<0時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)在(1)條件下,求函數(shù)f(x)在區(qū)間[0,1]上的最大值;
(Ⅲ)設(shè)函數(shù)g(x)=2ex ,求證:當(dāng)a=1,對x∈(0,1),g(x)﹣xf(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1求函數(shù)的定義域;

2判斷函數(shù)的奇偶性,并說明理由;

3判斷函數(shù)在區(qū)間上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域為,解不等式.

【答案】(1)奇函數(shù)(2)增函數(shù)(3)

【解析】試題分析:1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。

試題解析:1)函數(shù)為奇函數(shù).證明如下:

定義域為

為奇函數(shù)

2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:

任取,則

在(-1,1)上為增函數(shù)

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點睛

(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。

(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。

型】解答
結(jié)束】
22

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實數(shù)的值;

(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實數(shù)的取值范圍;

(3)若,且對任意的,都存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(x+φ)(A>0,0<<4,|φ|< )過點(0, ),且當(dāng)x= 時,函數(shù)f(x)取得最大值1.
(1)將函數(shù)f(x)的圖象向右平移 個單位得到函數(shù)g(x),求函數(shù)g(x)的表達式;
(2)在(1)的條件下,函數(shù)h(x)=f(x)+g(x)+2cos2x﹣1,如果對于x1 , x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a1 , a2 , …,an∈R,n≥3.若p:a1 , a2 , …,an成等比數(shù)列;q:(a +a +…+a )(a +a +…+a )=(a1a2+a2a3+…+an1an2 , 則p是q的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點E,點F為弦CD上異于點E的任意一點,連接BF、AF并延長交⊙O于點M、N.
(1)求證:B、E、F、N四點共圓;
(2)求證:AC2+BFBM=AB2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,
f(x)= ,
則關(guān)于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點之和為( 。
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1

查看答案和解析>>

同步練習(xí)冊答案