已知:ab、cR,abc = 1

求證:

 

答案:
解析:

證明:∵ ab、c∈R

= 9.

又∵ abc = 1

∴ (ab)+ (bc) +(ca) = 2.

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a,b,c∈R,a+b+c=1,求4a+4b+4c2的最小值,并求出取最小值時a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:a,b,c∈R+,求證:a+b+c≥
ab
+
bc
+
ca

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江蘇一模)已知實數(shù)a,b,c∈R,函數(shù)f(x)=ax3+bx2+cx滿足f(1)=0,設(shè)f(x)的導函數(shù)為f′(x),滿足f′(0)f′(1)>0.
(1)求
c
a
的取值范圍;
(2)設(shè)a為常數(shù),且a>0,已知函數(shù)f(x)的兩個極值點為x1,x2,A(x1,f(x1)),B(x2,f(x2)),求證:直線AB的斜率k∈(-
2a
9
,-
a
6
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩陣M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)選修4-5:不等式選講
(Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年江蘇省蘇錫常鎮(zhèn)、徐州、連云港六市高考數(shù)學一模試卷(解析版) 題型:解答題

已知實數(shù)a,b,c∈R,函數(shù)f(x)=ax3+bx2+cx滿足f(1)=0,設(shè)f(x)的導函數(shù)為f′(x),滿足f′(0)f′(1)>0.
(1)求的取值范圍;
(2)設(shè)a為常數(shù),且a>0,已知函數(shù)f(x)的兩個極值點為x1,x2,A(x1,f(x1)),B(x2,f(x2)),求證:直線AB的斜率

查看答案和解析>>

同步練習冊答案