7.如圖幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,CB=CD=2.面EAD⊥面ABCD,面FCB⊥面ABCD,且CF⊥BC.
(1)證明:BD⊥AE;
(2)若△ADE是正三角形,點(diǎn)P為AF上的點(diǎn),且PF=2PA,$CF=3\sqrt{3}$,證明:EP∥面ABCD.

分析 (1)由余弦定理求出BD,AB,由勾股定理得AD⊥BD,由此能證明BD⊥AE.
(2)以C為原點(diǎn),CA為x軸,CB為y軸,CF為z軸,建立空間直角坐標(biāo)系,利用向量法能證明EP∥面ABCD.

解答 證明:(1)∵四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,CB=CD=2,
∴BD=$\sqrt{4+4-2×2×2×cos120°}$=2$\sqrt{3}$,
cos60°=$\frac{4+A{B}^{2}-12}{4AB}$,整理,得AB2-2AB-8=0,
解得AB=4或AB=-2(舍),
∴AD2+BD2=AB2,∴AD⊥BD,
∵面EAD⊥面ABCD,∴BD⊥平面ADE,
又AE?平面ADE,∴BD⊥AE.
(2)∵四邊形ABCD是等腰梯形,AD⊥BD,∴AC⊥BC,
∵面FCB⊥面ABCD,且CF⊥BC,∴CF⊥平面ABCD,
∴以C為原點(diǎn),CA為x軸,CB為y軸,CF為z軸,建立空間直角坐標(biāo)系,
∵△ADE是正三角形,點(diǎn)P為AF上的點(diǎn),且PF=2PA,$CF=3\sqrt{3}$,
∴E($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,$\sqrt{3}$),P($\frac{4\sqrt{3}}{3}$,0,$\sqrt{3}$),
∴$\overrightarrow{EP}$=($\frac{5\sqrt{3}}{6}$,$\frac{1}{2}$,0),
又∵平面ABCD的法向量$\overrightarrow{n}$=(0,0,1),
∴$\overrightarrow{n}•\overrightarrow{EP}$=0,∴EP∥面ABCD.

點(diǎn)評(píng) 本題考查異面直線垂直的證明,考查線面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若A={x|x=4k+1,k∈Z},B={x|x=2k-1,k∈Z},則(  )
A.A⊆BB.B⊆AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn
已知對(duì)任意n∈N,Sn是an2和an的等差中項(xiàng).
(I)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)令cn=$\frac{1}{{a}_{n+1}^{2}-1}$,求{cn}的前n項(xiàng)和Wn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知圓心C(1,3),圓上一點(diǎn)A(-4,-1),求直徑AB的另一個(gè)端點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知直線l1:ax-y+1=0,l2:x+y+1=0,l1∥l2,則a的值為-1,直線l1與l2間的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{2x-y-1≤0}\\{2x+y+1≥0}\\{y≤x+1}\end{array}\right.$,則z=x+3y的最大值為(  )
A.16B.12C.11D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.對(duì)于問(wèn)題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-2,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-3,$-\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,在三棱錐D-ABC中,已知AB=AD=2,BC=1,$\overrightarrow{AC}•\overrightarrow{BD}=-3$,則CD=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在△ABC中,點(diǎn)D在邊BC上,BD=2,BA=3,AD=$\sqrt{7}$,∠C=45°.
(1)求∠B的大小;
(2)求△ABD的面積及邊AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案