【題目】已知拋物線上一點,與關(guān)于拋物線的對稱軸對稱,斜率為1的直線交拋物線于、兩點,且、在直線兩側(cè).
(1)求證:平分;
(2)點為拋物線在、處切線的交點,若,求直線的方程.
【答案】(1)證明見解析;(2)
【解析】
(1)要證平分,只需證直線傾斜角互補(bǔ),只需證斜率和為0,設(shè)直線方程,與拋物線方程聯(lián)立,運用韋達(dá)定理,即可求證;
(2)方程化為,求導(dǎo),求出拋物線在、處切線的斜率,繼而求出切線方程,聯(lián)立兩切線方程,求出點坐標(biāo),,到直線距離相等,即可求出直線的方程.
(1)與關(guān)于拋物線的對稱軸對稱,
設(shè)直線的方程為,
聯(lián)立,消去得,,
設(shè),
=,
直線傾斜角互補(bǔ),軸,
,平分;
(2)拋物線,,
在點處的切線方程為,①
同理在點處的切線方程為, ②
由①②得, ,
到直線的距離相等,
由點到直線的距離公式得:
,
所求的直線方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位已知直線l的參數(shù)方程為(為參數(shù),),拋物線C的普通方程為.
(1)求拋物線C的準(zhǔn)線的極坐標(biāo)方程;
(2)設(shè)直線l與拋物線C相交于A,B兩點,求的最小值及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,OA、OB、OC所在直線兩兩垂直,且,CA與平面AOB所成角為,D是AB中點,三棱錐的體積是.
(1)求三棱錐的高;
(2)在線段CA上取一點E,當(dāng)E在什么位置時,異面直線BE與OD所成的角為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在正項數(shù)列中,首項,點在雙曲線上,數(shù)列中,點在直線上,其中是數(shù)列的前項和.
(1)求數(shù)列、的通項公式;
(2)若,求證: 數(shù)列為遞減數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的函數(shù)滿足:對于任意實數(shù)x、y,總有恒成立,我們稱為“類余弦型”函數(shù).
已知為“類余弦型”函數(shù),且,求和的值;
在的條件下,定義數(shù)列2,3,求的值.
若為“類余弦型”函數(shù),且對于任意非零實數(shù)t,總有,證明:函數(shù)為偶函數(shù),設(shè)有理數(shù),滿足,判斷和的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線:交于,兩點,且的面積為16(為坐標(biāo)原點).
(1)求的方程.
(2)直線經(jīng)過的焦點且不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com