【題目】已知橢圓:的離心率為,點(diǎn),,分別是橢圓的左、右焦點(diǎn),為等腰三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點(diǎn)作直線交橢圓于兩點(diǎn),其中,另一條過的直線交橢圓于兩點(diǎn)(不與重合),且點(diǎn)不與點(diǎn)重合. 過作軸的垂線分別交直線,于,.
①求點(diǎn)坐標(biāo); ②求證:.
【答案】(Ⅰ); (Ⅱ) 見解析.
【解析】
(Ⅰ)根據(jù)已知求出,即得橢圓方程為. (Ⅱ)①由 可求. ②當(dāng)與軸垂直時(shí),兩點(diǎn)與,兩點(diǎn)重合,由橢圓的對(duì)稱性,. 當(dāng)不與軸垂直時(shí),聯(lián)立直線和橢圓方程證明,即.
(Ⅰ)由已知,,得,,
為等腰三角形, ,
則 解得,
橢圓方程為.
(Ⅱ)①由題意可得直線的方程為.
與橢圓方程聯(lián)立,由 ,可求.
②當(dāng)與軸垂直時(shí),兩點(diǎn)與,兩點(diǎn)重合,由橢圓的對(duì)稱性,.
當(dāng)不與軸垂直時(shí),
設(shè),,的方程為().
由消去,整理得.
則,.
由已知,,則直線的方程為,
令,得點(diǎn)的縱坐標(biāo).
把代入得.
由已知,,則直線的方程為,
令,得點(diǎn) 的縱坐標(biāo).
把代入得.
,
把,代入到中,
=.
即,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)令,若曲線在點(diǎn)處的切線的縱截距為,求的值;
(2)設(shè),若方程在區(qū)間內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于《中國詩詞大會(huì)》節(jié)目在社會(huì)上反響良好,某地也模仿并舉辦民間詩詞大會(huì),進(jìn)入正賽的條件為:電腦隨機(jī)抽取10首古詩,參賽者能夠正確背誦6首及以上的進(jìn)入正賽.若詩詞愛好者甲、乙參賽,他們背誦每一首古詩正確的概率均為.
(1)求甲進(jìn)入正賽的概率.
(2)若參賽者甲、乙都進(jìn)入了正賽,現(xiàn)有兩種賽制可供甲、乙進(jìn)行PK,淘汰其中一人.
賽制一:積分淘汰制,電腦隨機(jī)抽取4首古詩,每首古詩背誦正確加2分,錯(cuò)誤減1分.由于難度增加,甲背誦每首古詩正確的概率為,乙背誦每首古詩正確的概率為,設(shè)甲的得分為,乙的得分為.
賽制二:對(duì)詩淘汰制,甲、乙輪流互出詩名,由對(duì)方背誦且互不影響,乙出題,甲回答正確的概率為0.3,甲出題,乙回答正確的概率為0.4,誰先背誦錯(cuò)誤誰先出局.
(i)賽制一中,求甲、乙得分的均值,并預(yù)測誰會(huì)被淘汰;
(ii)賽制二中,誰先出題甲獲勝的概率大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號(hào)召,某貧困縣在精準(zhǔn)推進(jìn)上下功夫,在精準(zhǔn)扶貧上見實(shí)效.根據(jù)當(dāng)?shù)貧夂蛱攸c(diǎn)大力發(fā)展中醫(yī)藥產(chǎn)業(yè),藥用昆蟲的使用相應(yīng)愈來愈多,每年春暖以后到寒冬前,昆蟲大量活動(dòng)與繁殖,易于采取各種藥用昆蟲.已知一只藥用昆蟲的產(chǎn)卵數(shù)y(單位:個(gè))與一定范圍內(nèi)的溫度x(單位:℃)有關(guān),于是科研人員在3月份的31天中隨機(jī)選取了5天進(jìn)行研究,現(xiàn)收集了該種藥物昆蟲的5組觀察數(shù)據(jù)如表:
日期 | 2日 | 7日 | 15日 | 22日 | 30日 |
溫度/℃ | 10 | 11 | 13 | 12 | 8 |
產(chǎn)卵數(shù)y/個(gè) | 22 | 24 | 29 | 25 | 16 |
(1)從這5天中任選2天,記這2天藥用昆蟲的產(chǎn)卵數(shù)分別為m,n,求“事件m,n均不小于24”的概率?
(2)科研人員確定的研究方案是:先從這5組數(shù)據(jù)中任選2組,用剩下的3組數(shù)據(jù)建立線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
①若選取的是3月2日與3月30日這2組數(shù)據(jù),請(qǐng)根據(jù)3月7日、15日和22日這三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程?
②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的差的絕對(duì)值均不超過2個(gè),則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
附公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,全國人民都在抗擊“新型冠狀病毒肺炎”的斗爭中.當(dāng)時(shí)武漢多家醫(yī)院的醫(yī)用防護(hù)物資庫存不足,某醫(yī)院甚至面臨斷貨危機(jī),南昌某生產(chǎn)商現(xiàn)有一批庫存的醫(yī)用防護(hù)物資,得知消息后,立即決定無償捐贈(zèng)這批醫(yī)用防護(hù)物資,需要用A、B兩輛汽車把物資從南昌緊急運(yùn)至武漢.已知從南昌到武漢有兩條合適路線選擇,且選擇兩條路線所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng)計(jì)2000輛汽車,通過這兩條路線從南昌到武漢所用時(shí)間的頻數(shù)分布表如下:
所用的時(shí)間(單位:小時(shí)) | ||||
路線1的頻數(shù) | 200 | 400 | 200 | 200 |
路線2的頻數(shù) | 100 | 400 | 400 | 100 |
假設(shè)汽車A只能在約定交貨時(shí)間的前5小時(shí)出發(fā),汽車B只能在約定交貨時(shí)間的前6小時(shí)出發(fā)(將頻率視為概率).為最大可能在約定時(shí)間送達(dá)這批物資,來確定這兩車的路線.
(1)汽車A和汽車B應(yīng)如何選擇各自的路線.
(2)若路線1、路線2的“一次性費(fèi)用”分別為3.2萬元、1.6萬元,且每車醫(yī)用物資生產(chǎn)成本為40萬元(其他費(fèi)用忽略不計(jì)),以上費(fèi)用均由生產(chǎn)商承擔(dān),作為援助金額的一部分.根據(jù)這兩輛車到達(dá)時(shí)間分別計(jì)分,具體規(guī)則如下(已知兩輛車到達(dá)時(shí)間相互獨(dú)立,互不影響):
到達(dá)時(shí)間與約定時(shí)間的差x(單位:小時(shí)) | |||
該車得分 | 0 | 1 | 2 |
生產(chǎn)商準(zhǔn)備根據(jù)運(yùn)輸車得分情況給出現(xiàn)金排款,兩車得分和為0,捐款40萬元,兩車得分和每增加1分,捐款增加20萬元,若汽車A、B用(1)中所選的路線運(yùn)輸物資,記該生產(chǎn)商在此次援助活動(dòng)中援助總額為Y(萬元),求隨機(jī)變量Y的期望值,(援助總額一次性費(fèi)用生產(chǎn)成本現(xiàn)金捐款總額)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,已知,分別是,的中點(diǎn),將沿折起,使到的位置如圖所示,且,連接,.
(1)求證:平面平面.
(2)求平面與平面所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為“優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.
(1)若,,則在第一輪游戲他們獲“優(yōu)秀小組”的概率;
(2)若則游戲中小明小亮小組要想獲得“優(yōu)秀小組”次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點(diǎn)分別為,,離心率為,過的直線與橢圓交于,兩點(diǎn),且周長為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線,使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),若存在求出直線的方程;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com