【題目】已知函數(shù),其中.
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè).若在上恒成立,求實(shí)數(shù)的最大值.
【答案】(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).
【解析】
(Ⅰ)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;
(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時(shí),經(jīng)過分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.
(Ⅰ)函數(shù)的定義域?yàn)?/span>.
當(dāng)時(shí),.
令,解得(舍去),.
當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞減;
當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞增.
因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
(Ⅱ)由題意,可知在上恒成立.
(i)若,,,
,
構(gòu)造函數(shù),,則,
,,.
又,在上恒成立.
所以,函數(shù)在上單調(diào)遞增,
當(dāng)時(shí),在上恒成立.
(ii)若,構(gòu)造函數(shù),.
,所以,函數(shù)在上單調(diào)遞增.
恒成立,即,,即.
由題意,知在上恒成立.
在上恒成立.
由(Ⅰ)可知,
又,當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,
,不合題意,,即.
此時(shí)
構(gòu)造函數(shù),.
,
,,
,
恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.
綜上,實(shí)數(shù)的最大值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,時(shí),.
(1)當(dāng)時(shí),求數(shù)列的前項(xiàng)和;
(2)當(dāng)時(shí),求證:對任意,為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程是,在以極點(diǎn)為原點(diǎn)O,極軸為x軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系xOy中,曲線C2的參數(shù)方程為(θ為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程;
(2)將曲線C2經(jīng)過伸縮變換后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動(dòng)點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線的焦點(diǎn),過點(diǎn)且與坐標(biāo)軸不垂直的直線交拋物線于、兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),其中,.過點(diǎn)作軸的垂線交拋物線于點(diǎn),直線交拋物線于點(diǎn).
(1)求的值;
(2)求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;
(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有多年.龍眼干的級別按直徑的大小分為四個(gè)等級,其中直徑在區(qū)間為特級品,在的為一級品,在的為二級品,在的為三級品,某商家為了解某農(nóng)場一批龍眼干的質(zhì)量情況,隨機(jī)抽取了個(gè)龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計(jì)得到這些龍眼干的直徑的頻數(shù)分布表如下:
頻數(shù) | 1 | 29 | 7 |
用分層抽樣的方法從樣本的一級品和特級品中抽取個(gè),其中一級品有個(gè).
(1)求、的值,并估計(jì)這些龍眼干中特級品的比例;
(2)已知樣本中的個(gè)龍眼干約克,該農(nóng)場有千克龍眼干待出售,商家提出兩種收購方案:
方案A:以元/千克收購;
方案B:以級別分裝收購,每袋個(gè),特級品元/袋、一級品元/袋、二級品元/袋、三級品元/袋.用樣本的頻率分布估計(jì)總體分布,哪個(gè)方案農(nóng)場的收益更高?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),為兩個(gè)平面,命題:的充要條件是內(nèi)有無數(shù)條直線與平行;命題:的充要條件是內(nèi)任意一條直線與平行,則下列說法正確的是( )
A.“”為真命題B.“”為真命題
C.“”為真命題D.“”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com