圓C1:(x-m)2+(y+2)2=9與圓C2:(x+1)2+(y-m)2=4外切,則m的值為( 。
A、2B、-5C、2或-5D、不確定
分析:先求出兩圓的圓心坐標和半徑,利用兩圓的圓心距等于兩圓的半徑之和,列方程解m的值.
解答:解:由圓的方程得 C1(m,-2),C2(-1,m),半徑分別為3和2,兩圓相外切,
(m+1)2+(-2-m)2
=3+2,化簡得 (m+5)(m-2)=0,∴m=-5,或 m=2,
故選  C.
點評:本題考查兩圓的位置關(guān)系,兩圓相外切的充要條件是:兩圓圓心距等于兩圓的半徑之和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知z是實系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標平面上的對應(yīng)點為Pz,
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(非端點),則Pz在圓C上、寫出線段s的表達式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對應(yīng)關(guān)系,通過這種對應(yīng)關(guān)系的研究,填寫表(表中s1是(1)中圓C1的對應(yīng)線段).
    線段s與線段s1的關(guān)系 m、r的取值或表達式 
 s所在直線平行于s1所在直線  
 s所在直線平分線段s1  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關(guān)系;
(2)求直線m的方程,使直線m被圓C1截得的弦長為4,與圓C2截得的弦長是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,動圓M與兩圓C1,C2都相切,則動圓圓心M的軌跡方程是(  )
A、x=0
B、
x2
2
-
y2
14
=1(x≥
2
)
C、
x2
2
-
y2
14
=1
D、
x2
2
-
y2
14
=1或x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓C1:(x-m)2+(y+2)2=9與圓C2:(x+1)2+(y-m)2=4外切,則m的值為(  )
A.2B.-5C.2或-5D.不確定

查看答案和解析>>

同步練習(xí)冊答案