分析 連接D1G,可證明D1G⊥DE,根據(jù)三垂線定理,可證A1G⊥DE,同理可證A1G⊥DF,即可證明A1G⊥平面DEF.
解答 證明:連接D1G,∵E,G分別是棱CC1,CD的中點(diǎn),
∴∠DD1G=30°,∠D1DE=60°,可得:D1G⊥DE,
∵D1G是A1G在面DD1C1C中的射影,
∴根據(jù)三垂線定理,則A1G⊥DE,
連接AG,∵F,G分別是棱BC,CD的中點(diǎn),
∴∠DAG=30°,∠ADF=60°,可得:AG⊥DF,
∵AG是A1G在面ABCD中的射影,
∴根據(jù)三垂線定理,則A1G⊥DF,
又∵DE∩DF=D,
∴A1G⊥平面DEF.
點(diǎn)評(píng) 本題主要考查了直線與平面垂直的判定,三垂線定理的應(yīng)用,考查了空間想象能力和推理論證能力,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -2 | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com