【題目】如圖,四棱錐中,底面為平行四邊形, , 底面.

(1)證明: ;

(2)設(shè),求點(diǎn)到面的距離.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:()要證明線線垂直,一般用到線面垂直的性質(zhì)定理,即先要證線面垂直,首先由已知底面.,因此要證平面,從而只要證,這在中可證;()要求點(diǎn)到平面的距離,可過(guò)點(diǎn)作平面的垂線,由()的證明,可得平面,從而有平面,因此平面平面,因此只要過(guò),則就是的要作的垂線,線段的長(zhǎng)就是所要求的距離.

試題解析:()證明:因?yàn)?/span>,

由余弦定理得.

從而,,

又由底面, ,可得.

所以平面..

)解:作,垂足為.

已知底面,則,

由()知,又,所以.

平面, .

平面.

由題設(shè)知, ,則,

根據(jù),得

即點(diǎn)到面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【河南省豫南九校(中原名校)2017屆高三下學(xué)期質(zhì)量考評(píng)八數(shù)學(xué)(文)】已知雙曲線的左右兩個(gè)頂點(diǎn)是, ,曲線上的動(dòng)點(diǎn)關(guān)于軸對(duì)稱,直線 交于點(diǎn)

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)點(diǎn),軌跡上的點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】路燈距地面8 m,一個(gè)身高為1.6 m的人以84 m/min的速度在地面上從路燈在地面上射影點(diǎn)C沿某直線離開(kāi)路燈.

(1)求身影的長(zhǎng)度y與人距路燈的距離x之間的關(guān)系式;

(2)求人離開(kāi)路燈的第一個(gè)10 s內(nèi)身影的平均變化率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,⊥平面,且四邊形是平行四邊形.

(1)求證:

(2)當(dāng)點(diǎn)的什么位置時(shí),使得∥平面,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)行如圖的程序,如果輸入的m,n的值分別是24和15,記錄輸出的i和m的值.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(i﹣4,m),圓C的圓心在直線l:y=2x﹣4上.

(1)若圓C的半徑為1,且圓心C在直線y=x﹣1上,過(guò)點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使∠OMA=90°,求圓C的半徑r的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在四棱錐中, 是線段的中點(diǎn).

(1)求證: 平面;

(2)若,平面平面,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角梯形中, , , , , ,如圖1所示,將沿折起到的位置,如圖2所示.

(1)當(dāng)平面平面時(shí),求三棱錐的體積;

(2)在圖2中, 的中點(diǎn),若線段,且平面,求線段的長(zhǎng);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖F1,F2分別是橢圓C的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn)F1AF2=60°.

(1)求橢圓C的離心率;

(2)已知△AF1B的面積為40a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角,A,B,C對(duì)邊的邊長(zhǎng)分別為a,b,c,且acosB﹣bcosA= c.
(1)求 的值;
(2)求tan(A﹣B)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案