【題目】已知函數(shù).
(1)討論的導數(shù)的單調(diào)性;
(2)若有兩個極值點,,求實數(shù)的取值范圍,并證明.
【答案】(1)在上單調(diào)遞減,在上單調(diào)遞增;
(2)見解析.
【解析】
(1)求出,令,對,討論來求的單調(diào)性;
(2)將有兩個極值點,轉化為有兩解,繼續(xù)轉化為有兩解,構造函數(shù),求導為其極小值,可得,即可求得實數(shù)的取值范圍;另外要證明,不妨設,則,由(1)根據(jù)的單調(diào)性得,通過變形,轉化為證明,進一步變形證明,構造函數(shù),利用導數(shù)研究其最小值即可證明.
(1)由題意,得.
設,則.
①當時,,所以在上單調(diào)遞增.
②當時,由,得.
當時,,在上單調(diào)遞減;
當時,,在上單調(diào)遞增.
(2)由于有兩個極值點,,即在上有兩解,,
即,顯然,故等價于有兩解,,
設,則,
當時,,所以在單調(diào)遞減,
且,時,,時,;
當時,,所以在單調(diào)遞減,且時,;
當時,,所以在單調(diào)遞增,且時,,
所以是的極小值,有兩解,等價于,得.
不妨設,則.
據(jù)(1)在上單調(diào)遞減,在上單調(diào)遞增,
故,
由于,,且,則,
所以,,
即,,
欲證明:,等價于證明:,
即證明:,只要證明:,
因為在上單調(diào)遞減,,
所以只要證明:,
由于,所以只要證明:,
即證明:,
設,據(jù)(1),
,
所以在上單調(diào)遞增,
所以,
即,
故.
科目:高中數(shù)學 來源: 題型:
【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有100多年.龍眼干的級別按直徑的大小分為四個等級(如下表).
級別 | 三級品 | 二級品 | 一級品 | 特級品 |
某商家為了解某農(nóng)場一批龍眼干的質(zhì)量情況,隨機抽取了100個龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計得到這些龍眼干的直徑的頻數(shù)分布表如下:
頻數(shù) | 1 | 29 | 7 |
用分層抽樣的方法從樣本的一級品和特級品中抽取6個,其中一級品有2個.
(1)求、的值,并估計這批龍眼干中特級品的比例;
(2)已知樣本中的100個龍眼干約500克,該農(nóng)場有500千克龍眼干待出售,商家提出兩種收購方案:
方案:以60元/千克收購;
方案:以級別分裝收購,每袋100個,特級品40元/袋、一級品30元/袋、二級品20元/袋、三級品10元/袋.
用樣本的頻率分布估計總體分布,哪個方案農(nóng)場的收益更高?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100 人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.
(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)從全校學生中隨機抽取3名學生,記為體重在的人數(shù),求的分布列和數(shù)學期望;
(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態(tài)分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到單價(單位:千元)與銷量(單位:百件)的關系如下表所示:
單價(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
銷量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若變量,具有線性相關關系,求產(chǎn)品銷量(百件)關于試銷單價(千元)的線性回歸方程;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值,當銷售數(shù)據(jù)對應的殘差滿足時,則稱為一個“好數(shù)據(jù)”,現(xiàn)從5個銷售數(shù)據(jù)中任取3個,求其中“好數(shù)據(jù)”的個數(shù)的分布列和數(shù)學期望.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在A,B試驗地隨機抽選各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中a的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,以頻率作為概率,若在A,B兩塊實驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學期望;
(3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認為優(yōu)質(zhì)花苗與培育方法有關.
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知離心率為的橢圓,經(jīng)過拋物線的焦點,斜率為1的直線經(jīng)過且與橢圓交于兩點.
(1)求面積;
(2)動直線與橢圓有且僅有一個交點,且與直線,分別交于兩點,且為橢圓的右焦點,證明為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等邊的邊長為,點,分別是,上的點,且滿足 (如圖(1)),將沿折起到的位置,使二面角成直二面角,連接,(如圖(2)).
(1)求證:平面;
(2)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直四棱柱的棱長均相等,且BAD=60,M是側棱DD1的中點,N是棱C1D1上的點.
(1)求異面直線BD1和AM所成角的余弦值;
(2)若二面角的大小為,,試確定點N的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com