已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當x<0時,函數(shù)f(x)單調遞增,且有f(x)<0,若f(0)=0,則下列不等式:

①-f(-2)>-f(-1)>f(1)>f(2);

②f(-2)<f(-1)<f;

③f(-4)<f(-2)<-f(3)<-f(5);

④f(-2)<f(-1)<-f(3)<-f(4).

其中正確的個數(shù)是

[  ]

A.1
B.2
C.3
D.4
答案:D
解析:

根據(jù)偶函數(shù)的性質可知f(x)=f(-x).當x0時,函數(shù)f(x)單調遞增,且有f(x)0,若f(0)=0,則x〉0,函數(shù)f(x)單調遞減,f(x)<0。


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x+
1
2
)
為奇函數(shù),設g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=( 。
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說明為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關系為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實數(shù)a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

同步練習冊答案