已知f(x)是定義在R上的偶函數(shù),且對任意x∈R,都有f(x)=f(x+4),當(dāng)x∈[4,6]時,f(x)=2x+1,則函數(shù)f(x)在區(qū)間[-2,0]上的反函數(shù)f-1(x)的值f-1(19)=


  1. A.
    3-2log23
  2. B.
    -1-2log23
  3. C.
    5+log23
  4. D.
    log215
A
分析:利用函數(shù)的奇偶性、周期性及反函數(shù),把要求的函數(shù)的自變量轉(zhuǎn)化到所給的區(qū)間x∈[4,6],即可計(jì)算出要求的值.
解答:設(shè)f-1(19)=a∈[-2,0],則f(a)=19,
∵a∈[-2,0],∴-a∈[0,2],∴(-a+4)∈[4,6],
又已知f(x)是定義在R上的偶函數(shù),∴f(a)=f(-a),
∵對任意x∈R,都有f(x)=f(x+4),∴f(-a)=f(-a+4),
而當(dāng)x∈[4,6]時,f(x)=2x+1,
∴f(-a+4)=2-a+4+1,
∴2-a+4+1=19,即2-a+4=18,即-a+4=log218,
而log218=1+2log23,
∴-a+4=1+2log23,
∴a=3-2log23.
故選A.
點(diǎn)評:本題綜合考查了函數(shù)的奇偶性、周期性及反函數(shù),準(zhǔn)確理解以上有關(guān)定義及性質(zhì)是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊答案