【題目】已知拋物線的準線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且,當k最大時,點P恰好在以H,F為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____.
【答案】1
【解析】
畫出拋物線,過作拋物線準線于,連接,設(shè)直線的傾斜角為,由拋物線定義可得,由題意當k最大時,取得最小值.而當取得最小時,直線與拋物線相切,設(shè)出直線方程,聯(lián)立拋物線可求得,進而得切點坐標,即可由雙曲線定義及幾何性質(zhì)求得離心率.
根據(jù)題意畫出拋物線,過作拋物線準線于,連接.
由拋物線定義可知,由,(),
設(shè)直線的傾斜角為,則,
可得,
當k最大時,取得最小值,且,
當取得最小值時直線與拋物線相切,
設(shè)直線的方程為,
則,化簡可得,
因為直線與拋物線相切,則,
解得,由可得,同時可得切點橫坐標為,
將切點橫坐標帶入拋物線可得,
因為點P恰好在以H,F為焦點的雙曲線上,
由雙曲線定義及兩點間距離公式可得,
,
所以雙曲線離心率為,
故答案為:1;.
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①命題“若,則”的逆否命題;
②“,使得”的否定是:“,均有”;
③命題“”是“”的充分不必要條件;
④:,:,且為真命題.
其中真命題的序號是________.(填寫所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).若函數(shù)在區(qū)間上有兩個零點,則的取值范圍是________.若其在區(qū)間上至少有一個零點,則的最小值是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為貫徹落實黨中央全面建設(shè)小康社會的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開展“精準扶貧”工作.經(jīng)過多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標準,該地區(qū)僅剩部分家庭尚未實現(xiàn)小康.2019年7月,為估計該地能否在2020年全面實現(xiàn)小康,統(tǒng)計了該地當時最貧困的一個家庭2019年1至6月的人均月純收入,作出散點圖如下:
根據(jù)相關(guān)性分析,發(fā)現(xiàn)其家庭人均月純收入與時間代碼之間具有較強的線性相關(guān)關(guān)系(記2019年1月、2月……分別為,,…,依此類推),由此估計該家庭2020年能實現(xiàn)小康生活.但2020年1月突如其來的新冠肺炎疫情影響了奔小康的進展,該家庭2020年第一季度每月的人均月純收入均只有2019年12月的預(yù)估值的.
(1)求該家庭2020年3月份的人均月純收人;
(2)如果以該家庭3月份人均月純收入為基數(shù),以后每月的增長率為,為使該家庭2020年能實現(xiàn)小康生活,至少應(yīng)為多少?(結(jié)果保留兩位小數(shù))
參考數(shù)據(jù):,,,.
參考公式:線性回歸方程中,,;
(,).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐D-ABC中,,且,,M,N分別是棱BC,CD的中點,下面結(jié)論正確的是( )
A.B.平面ABD
C.三棱錐A-CMN的體積的最大值為D.AD與BC一定不垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)·均輸》中有如下問題:“今有五人分十錢,令上二人所得與下三人等,問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( )
A.錢B.錢C.錢D.錢
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知、分別為橢圓的左、右焦點,點關(guān)于直線對稱的點Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點,且,則___.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com