分析 (1)利用兩點式求直線l的方程;
(2)由題意可知:O、P、C、D四點共圓且在以O(shè)P為直徑的圓上,C、D在圓O:x2+y2=2上可得直線C,D的方程,即可求得直線CD是否過定點
解答 解:(1)∵直線l過兩點A(1,-$\frac{3}{2}$),B(4,0),
∴直線l的方程為$\frac{y+\frac{3}{2}}{0+\frac{3}{2}}=\frac{x-1}{4-1}$,即y=$\frac{1}{2}x$-2;
證明:(2)由題意可知:O、P、C、D四點共圓且在以O(shè)P為直徑的圓上,
設(shè)P(t,$\frac{1}{2}t-2$),其方程為:x(x-t)+y(y-$\frac{1}{2}t$+2)=0,
又C、D在圓O:x2+y2=2上
∴l(xiāng)CD:$tx+(\frac{1}{2}t-2)y-2$=0,
即(x+$\frac{y}{2}$)t-2y-2=0,
由$\left\{\begin{array}{l}{x+\frac{y}{2}=0}\\{2y+2=0}\end{array}\right.$,得x=$\frac{1}{2}$,y=-1,
∴直線CD過定點($\frac{1}{2}$,-1).
點評 本題考查直線與圓的位置關(guān)系,考查直線恒過定點,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com