精英家教網(wǎng)已知y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),x∈[0,π]上的圖象如圖,則不等式
f(x)g(x)
≥0
的解集是
 
分析:利用函數(shù)的奇偶性,畫出函數(shù)的圖形,利用數(shù)形結合求解不等式的解集.
解答:精英家教網(wǎng)解:利用函數(shù)奇偶性畫出f(x)、g(x)在[-π,π]上的圖象,如圖
f(x)
g(x)
≥0?
f(x)≥0
g(x)>0
f(x)≤0
g(x)<0

∴x∈(-π,-
π
3
]∪(0,
π
3
]

故答案為:(-π,-
π
3
]∪(0,
π
3
]
點評:本題考查函數(shù)的圖象,函數(shù)的性質,分式不等式的解法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結論;
(3)設f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a,b∈R,都滿足:f(a•b)=af(b)+bf(a).
(1)求f(1)的值;
(2)判斷y=f(x)的奇偶性,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結論;
(3)設f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結論;
(3)設f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案