在銳角三角形ABC中,給出下列各式:①tan(A+B)+tanC=0;②tan(2A+2B)+tanC=0③tan(A+B)>tanC其中正確的有( 。
A、0個B、1個C、2個D、3個
考點:命題的真假判斷與應用
專題:解三角形,簡易邏輯
分析:利用三角形的內角和定理、誘導公式即可判斷出.
解答: 解:在銳角三角形ABC中,給出下列各式:
①tan(A+B)=tan(π-C)=-tanC,因此tan(A+B)+tanC=0,正確;
②tan(2A+2B)=tan(2π-2C)=-tan2C≠-tanC,因此不正確;
③tan(A+B)<0<tanC,因此不正確.
其中正確的①.
故選:B.
點評:本題考查了三角形的內角和定理、誘導公式、正切函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

x=4cscθ
y=2cotθ
(θ為參數(shù),θ≠kπ,k∈z)的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中正確的是(  )
A、用簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣的方法抽取樣本時,要求個體被抽取到的概率相等,但是在系統(tǒng)抽樣中,如果不能平均分組時,除剔除的某些個體被抽取到的概率就和后面參與抽取的其它個體被抽取的概率不同
B、在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等
C、在相同條件下的重復試驗中,某一隨機事件出現(xiàn)的頻率就是該隨機事件的概率
D、在一定條件下,概率為0的事件一定是不可能事件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=2,a1+a4=7
(1)求數(shù)列{an}的通項公式
(2)若數(shù)列{an}的前n項和為Sn,求S8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=
1
2
sin2x是( 。
A、最小正周期為2π的偶函數(shù)
B、最小正周期為2π的奇函數(shù)
C、最小正周期為π的偶函數(shù)
D、最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
16
-
y2
9
=1
上一點P對焦點F1,F(xiàn)2的視角為60°,則△F1PF2的面積為( 。
A、2
3
B、3
3
C、6
3
D、9
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果一條直線與兩條平行線中的一條垂直,那么它和另一條直線( 。
A、垂直B、平行C、異面D、相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡
1+tanα
2sin2α+2sinαcosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=kx-2,M(-2,0),N(-1,0),O為坐標原點,動點Q滿足
|QM|
|QN|
=
2
,動點Q的軌跡為曲線C
(1)求曲線C的方程;
(2)若直線l與圓O:x2+y2=2交于不同的兩點A,B,當∠AOB=
π
2
時,求k的值;
(3)若k=
1
2
,P是直線l上的動點,過點P作曲線C的兩條切線PC、PD,切點為C、D,探究:直線CD是否過定點.

查看答案和解析>>

同步練習冊答案