已知數(shù)列數(shù)學(xué)公式,數(shù)列{bn}的前n項(xiàng)和為Sn
(1)求證數(shù)列{an-1}是等比數(shù)列;
(2)求{an}的通項(xiàng)公式;
(3)求數(shù)列{bn}的前n項(xiàng)和Sn

解:(1)∵a1=3,an+1=2an-1,
∴an+1-1=2(an-1),
∴{an-1}是以a1-1=2為首項(xiàng),以2為公比的等比數(shù)列.(4分)
(2)由(1)知:∴an-1=2•2n-1=2n,∴an=2n+1 (8分)
(3)由題意及(2)得,(8分)
=(13分)
分析:(1)由an+1=2an-1進(jìn)行變形即得an+1-1=2(an-1),由此形式即可判斷出數(shù)列{an-1}是等比數(shù)列;
(2)求{an}的通項(xiàng)公式,可以根據(jù)(1)的結(jié)論先求出an-1,解方程即得{an}的通項(xiàng)公式;
(3)求數(shù)列{bn}的前n項(xiàng)和Sn.先求{bn}的通項(xiàng)公式,根據(jù)其形式發(fā)現(xiàn),數(shù)列{bn}的前n項(xiàng)和為Sn可用累加法求得.
點(diǎn)評(píng):本題考查證明數(shù)列的等比的性質(zhì),利用等比數(shù)列的求和公式求和,及根據(jù)數(shù)列的通項(xiàng)形式選擇合適的方法求和,本題是數(shù)列中有一定綜合性的題目.在第一問(wèn)及第三問(wèn)中對(duì)觀察變形的能力要求較高,做題時(shí)用心體會(huì)一下.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}中,a1=2點(diǎn)An
an
,
an_+
1
)在雙曲線y2-x2=1上,數(shù)列{bn}中,點(diǎn)(bn,Tn)在直線y=-
1
2
x+1上,其中Tn是數(shù)列的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{bn}是等比數(shù)列;
(3)若cn=anbn,求證:cn+1<cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列an是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足an2=S2n-1,n∈N*.?dāng)?shù)列bn滿足bn=
1anan+1
,Tn為數(shù)列bn的前n項(xiàng)和.
(1)求a1、d和Tn;
(2)若對(duì)任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)集L={(x,y)|y=
m
n
},其中
m
=(2x-b,1),
n
=(1,b+1),點(diǎn)列Pn(an,bn)(n∈N+)在L中,p1為L(zhǎng)與y軸的交點(diǎn),數(shù)列{an}是公差為1的等差數(shù)列.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,令Sn=f(1)+f(2)+f(3)+…+f(n),試寫(xiě)出Sn關(guān)于n的表達(dá)式;
(Ⅲ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,給定奇數(shù)m(m為常數(shù),m∈N+,m>2).是否存在k∈N+,,使得
f(k+m)=2f(m),若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-mx+m(x∈R)同時(shí)滿足:(1)不等式f(x)≤0的解集有且只有一個(gè)元素;(2)在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n),bn=1-
8-man
,我們把所有滿足bi•bi+1<0的正整數(shù)i的個(gè)數(shù)叫做數(shù)列{bn}的異號(hào)數(shù).根據(jù)以上信息,給出下列五個(gè)命題:
①m=0;
②m=4;
③數(shù)列{an}的通項(xiàng)公式為an=2n-5;
④數(shù)列{bn}的異號(hào)數(shù)為2;
⑤數(shù)列{bn}的異號(hào)數(shù)為3.
其中正確命題的序號(hào)為
②⑤
②⑤
.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

同步練習(xí)冊(cè)答案